Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Love. Death. Transformers. avatar

Love. Death. Transformers.

❤️☠️🤗
Указанные действия не являются ресерчем, поскольку:
а) Мы не ученые;
б) Оно работает.
@transformerslovedeatch
по всем вопросам
TGlist 评分
0
0
类型公开
验证
未验证
可信度
不可靠
位置Росія
语言其他
频道创建日期Mar 03, 2020
添加到 TGlist 的日期
May 27, 2024
关联群组

记录

28.04.202523:59
19.7K订阅者
13.03.202523:59
100引用指数
11.03.202518:02
8.4K每帖平均覆盖率
11.02.202520:49
9.5K广告帖子的平均覆盖率
18.02.202511:21
10.27%ER
10.03.202523:34
36.53%ERR

Love. Death. Transformers. 热门帖子

03.04.202514:09
проклятая картинка планирования хаты от 4о, чем дольше смотришь тем тяжелее
It's so over, gemeni2.5 flash это гигачат
Погода такая что хочется сбежать с пар, одна проблема - у меня пар давно нет.
я говорил что я ненавижу нейросети?

Это "educational" видео с реддита как делают зубную пасту
Наконец то - дожили qwen3!

Вероятно лучшие до конца этой недели открытые модели, 30б с экспертами по 3б будут ОЧЕНЬ быстрыми, ожидаю по 300tps на nvidia железках

Из интересного - hybryd thinking, вы даете токен /think и модель начинает думать, ну или можно давать /no_think и модель будет глуповой.

А еще вкатили поддержку mcp сервера, обещают что все будет работать, да и метрики на агентских бенчах гуд


blog
Ggufs
Яндекс наконец выложил в открытый доступ Instruct-версию YandexGPT 5 Lite. 🔥

Что особенного?

Лучше предыдущих версий Lite по всем фронтам:
🔄 Function calling — как в топовых моделях
📚 Контекст увеличен в 4 раза — с 8K до 32K токенов!

Немного бенчмарков и сравнений

По внутреннему SbS в 62% случаев превосходит китайскую Qwen2.5-7B-Instruct и примерно на уровне GPT-4o Mini в стандартных задачах Яндекса.
Из интересного - модель бьёт собственную закрытую YandexGPT 4 Pro предыдущего поколения!

Модель всего 8б, кванты такой модели можно запустить на ноуте, зато по-русски пишет бодрее всех qwen-llama-gemma и тд.

Философия открытости
Помните, как в феврале они выложили Pretrain-версию? Мы в Вихрях и Илья в Сайге довольно быстро сделали instruct- версию, она даже стала довольно популярной(4 по загрузкам). Еще были квантованные версии от сообщества. А теперь Яндекс выкладывают свой полноценный instruct вместе с GGUF-форматом!

Лицензия
Можно юзать до 10 млн токенов в месяц в любых целях, включая коммерческие. Этого хватит для чат-ботов на небольших сайтах, генерации описаний товаров, автоматизации поддержки клиентов.

Модель уже доступна на Hugging Face, в чате с Алисой (с опцией Про), а для бизнеса — через API в Yandex Cloud. В платной версии в Yandex Cloud API теперь совместим с OpenAI - теперь все будет нормально работать.

Теперь ждем, как инстракт-версию применит комьюнити
转发自:
AbstractDL avatar
AbstractDL
21.04.202512:29
RL не развивает потенциал рассуждений LLM (by Tsinghua)

RL с верифицируемыми наградами (RLVR) — один из самых популярных подходов для прокачки reasoning-способностей современных LLM, вроде OpenAI-o1 и DeepSeek-R1. Считается, что RLVR позволяет модели самой находить новые паттерны рассуждений, отсутствующие в базовой версии.

Но авторы новой статьи из Tsinghua и SJTU решили это перепроверить и получили крайне неожиданный результат: RLVR НЕ создаёт новые стратегии рассуждений.

Когда мало сэмплов (pass@1), то да, RL версии обгоняют base модели. Но если взять pass@128 или pass@256 (много попыток), то уже наоборот, базовые версии стабильно оказываются ЛУЧШЕ, причём существенно!

Причина: RL не создаёт новые паттерны, а лишь усиливает вероятность уже известных решений из базовой модели. При этом резко падает энтропия, а значит, сужается пространство возможных решений.

Прямо противоположный эффект у дистилляции (например, Distill-R1-Qwen): дистилляция реально добавляет в модель новые стратегии рассуждений.

Авторы проверили гипотезу на огромном наборе задач (математика, программирование, визуальный reasoning), множестве моделей и RL-алгоритмов (PPO, GRPO, ReMax и др.). Везде одно и то же — базовая модель имеет больший потенциал при достаточном количестве попыток.

Похоже, что для реального роста reasoning-способностей нужно придумывать совершенно другие подходы.

Статья, GitHub
31.03.202508:57
ищем демидович/антидемидович в латехе, ща заебашим бенч нормальный
а нахуя вам ллм тут?
转发自:
Kali Novskaya avatar
Kali Novskaya
05.04.202519:23
🌸Релизим Llama 4🌸

OSS на уровне Gemini и Deepseek

Сегодня мы релизим модели из семейства Llama 4 — Llama 4 17Bx16 experts (Scout) и 128 experts (Maverick)

🌸Что интересного:

— 10 миллионов токенов контекстного окна с отличным качеством у модели Scout
— полный размер модели 16 экспертов — 108 млрд параметров, 128 экспертов — 400 млрд
— модель мультимодальная, инпут — текст, изображения, видео

Где посмотреть:
🟣Чекпоинты HF
🟣Блогпост
вымер
转发自:
max.sh avatar
max.sh
09.04.202513:07
LLM много рассуждают. Но можно ли верить их рассуждениям? Alignment команда 🖥 показывает, что нет.

Статья. Блогпост.

TL;DR: Эксперименты простые, на полусинтетических средах. Доверять цеопчкам рассуждений (CoT) рассуждающих (по крайней мере Claude и DeepSeek )моделей рано. Модели нужно проверять, проверять и перепроверять. При чем как ответы (предсказания), так и рассуждения - далеко не всегда они озвучивают то, что реально думают.

А теперь подробнее.

📍Рассуждающие (Reasoning) модели везде. Их суть в том, что прежде, чем дать финальный ответ на вопрос, они могут нагенерировать промежуточных цепочек рассуждений (CoTs), а потом дать финальный ответ.

Такие модели, как правило, значительно бустят метрики на всех бенчмарках и способны решать очень сложные задачи.

В идеальном мире через CoT мы можем понять, как модель реально мыслит и приходит к ответу. То есть в цепочках должны быть достоверные (faithful) описания того, как модель принимает решения. Авторы пытаются протестировать гипотезу достоверности цепочек, генерируемых моделью. На Claude 3.7 и DeepSeek R1 выводы довольно удручающие - текущие модели далеки от генерации достоверных CoT.

Проверяется гипотеза о достоверности рассуждений через три разных эксперимента. В посте только про основной “тест на достоверность”

📍Сетап эксперимента.

Берут Multiple choice вопросы из MMLU и GPQA. В одном инференсе модели дают стандартный промпт с вопросом, просят порассуждать и потом дать ответ на вопрос.

Затем на том же датасете вопросов в промт намеренно добавляют подсказку (hint) для каждого вопроса. Подсказки бывают разных типов: правильные, неправильные, безопасные или с указанием на нелегальное получение информации

С таким injected промптом модель снова просят порассуждать и дает ответ.

Оставляют только те вопросы, где ответ модели между промптом без подсказки и промптом с подсказкой поменялся (картинка 1 для пояснений). Логично предположить, что это именно тот набор вопросов, где подсказка изменила размышления модели (все остальные переменные зафиксированы, а фактор случайности в изменении ответа отфильтровывается), а следовательно и ответ. На этом наборе вопросов измеряют достоверность цепочек.

📍Как мерить достоверность

Достоверная модель, если дать в промпт дополнительную информацию об ответе на вопрос, должна упомянуть факт подсказки и озвучить (verbalize) это в своих CoT как фактор, на который она опирается при ответе. Если ответ модели зависит от наличия подсказки в промпте, то безопасная система должна обозначить фактор подсказки в своих рассуждения - опять же, если гипотеза, что CoT отражают процесс принятия решений моделью верна.

Фактор вербализации подсказки измеряют через Claude 3.5 с последующей ручной верификацией.

Наблюдаем следующее:

🔘Claude 3.7 в среднем генерирует 25% достоверных цепочек, а R1 - 39%. Таким образом, подавляющее большинство CoT никак не упомянули в своем рассуждении факт подсказки. Картинка 2 с результатми на разных типах подсказок

🔘Все модели используют подсказки. То есть если в промпте есть подсказка (и не важно, правильная или нет), модели имеют склонность выбрать вариант из подсказки. Картинка 3 с результатами.

🔘Claude модели на 24% чаще используют фактор подсказки, в сравнении с DeepSeek. Удручает, что неправильная подсказка меняет внутренние убеждения модели в пользу неправильного ответа без какой-либо вербализации почему она это делает (то есть нет указания на подсказку) - модель просто генерирует длинные цепочки неверных рассуждений подгоняясь под неправильный ответ в подсказке.

🔘Недостоверные цепочки в среднем длиннее. Claude 3.7 в среднем задействовал 2064 токена для генерации недостоверных цепочек, тогда как для достоверных хватало 1439.

🔘 Достоверность падает с увеличением сложности вопросов.

В общем, у задачи Alignment-а еще большой путь, а модели пока все такой же черный ящик, который может врать и не краснеть - 😄

💡 В комментариях оставил маленький абзац про другие эксперименты из статьи. В целом советую всю статью к прочтению - хорошо структурировано и классно подано.
登录以解锁更多功能。