
My Proxy | مای پروکسی

حامیان پزشکیان

Airdrop Fam

Notcoin Community

Proxy MTProto

Binance Announcements

Proxy MTProto | پروکسی

iRo Proxy | پروکسی

خبرفوری

My Proxy | مای پروکسی

حامیان پزشکیان

Airdrop Fam

Notcoin Community

Proxy MTProto

Binance Announcements

Proxy MTProto | پروکسی

iRo Proxy | پروکسی

خبرفوری

My Proxy | مای پروکسی

حامیان پزشکیان

Airdrop Fam

Data Secrets
Технологиялар
Главный по машинному обучению
Сотрудничество: @veron_28
Реестр: clck.ru/3FY3GN
https://telega.in/c/data_secrets
Сотрудничество: @veron_28
Реестр: clck.ru/3FY3GN
https://telega.in/c/data_secrets
TGlist рейтингі
0
0
ТүріҚоғамдық
Растау
РасталғанСенімділік
СенімсізОрналасқан жеріРосія
ТілБасқа
Канал құрылған күніСерп 16, 2022
TGlist-ке қосылған күні
Трав 28, 2024Қосылған топ![Data Secrets [CHAT]](https://static-storm.tglist.com/da1b354b28a3cd215fbc5731e8fd06cb/be92588d-21d4-4364-897a-48b0349874f6.jpg?w=48&h=48)
![Data Secrets [CHAT]](https://static-storm.tglist.com/da1b354b28a3cd215fbc5731e8fd06cb/be92588d-21d4-4364-897a-48b0349874f6.jpg?w=48&h=48)
Data Secrets [CHAT]
3.4K
Рекордтар
16.05.202523:59
60KЖазылушылар08.02.202510:20
400Дәйексөз индексі17.03.202513:34
24.9K1 жазбаның қамтуы30.04.202517:17
13.5KЖарнамалық жазбаның қамтуы13.05.202509:54
11.31%ER17.03.202513:34
45.37%ERR





+2
12.05.202507:37
Пу-пу-пу, тот самый понедельник после майских. Чтобы немного поднять всем настроение, несем с утра приятную новость
Пока все отдыхали на шашлыках, мы с командой торопились поскорее закончить для вас кое-что особенное. И это – большой конспект по большим языковым моделям.
Внутри – все, что нужно, чтобы от А до Я понять, как работают современные LLM:
– необходимая математика
– механизм внимания и трансформеры со схемами и интуитивными примерами
– все про предобучение
– основы и алгоритмы RL + ризонинг
– ... и даже полноценный гайд по тому, как самостоятельно зафайнтюнить модель.
По секрету: работа над конспектом заняла у нас больше месяца.
500 🔥 и завтра мы выложим сюда полную pdf-версию
Пока все отдыхали на шашлыках, мы с командой торопились поскорее закончить для вас кое-что особенное. И это – большой конспект по большим языковым моделям.
Внутри – все, что нужно, чтобы от А до Я понять, как работают современные LLM:
– необходимая математика
– механизм внимания и трансформеры со схемами и интуитивными примерами
– все про предобучение
– основы и алгоритмы RL + ризонинг
– ... и даже полноценный гайд по тому, как самостоятельно зафайнтюнить модель.
По секрету: работа над конспектом заняла у нас больше месяца.
500 🔥 и завтра мы выложим сюда полную pdf-версию
13.05.202517:42
Большой коспект по LLM от нашей команды 👍
Мы долго трудились и наконец готовы представить вам наш большой авторский конспект по языковым моделям. Почти 50 страниц, 7 разделов и все, что нужно, чтобы понять, как работают современные LLM. Внутри:
➖ Краткая история LLM от перцептрона до ризонинг-моделей
➖ Необходимая математика: линал и матанализ на пальцах
➖ Все про механизм внимания и трансформеры от А до Я
➖ Дотошное объяснения процесса предобучения
➖ Практический гайд "Как самостоятельно затюнить модель"
➖ RL – с нуля до ризонинга
Все – в иллюстрациях, схемах и интуитивно понятных примерах.
Сохраняйте, делитесь с друзьями и ставьте ❤️
Мы долго трудились и наконец готовы представить вам наш большой авторский конспект по языковым моделям. Почти 50 страниц, 7 разделов и все, что нужно, чтобы понять, как работают современные LLM. Внутри:
➖ Краткая история LLM от перцептрона до ризонинг-моделей
➖ Необходимая математика: линал и матанализ на пальцах
➖ Все про механизм внимания и трансформеры от А до Я
➖ Дотошное объяснения процесса предобучения
➖ Практический гайд "Как самостоятельно затюнить модель"
➖ RL – с нуля до ризонинга
Все – в иллюстрациях, схемах и интуитивно понятных примерах.
Сохраняйте, делитесь с друзьями и ставьте ❤️


20.04.202508:58
Там Стэнфорд выложили на YouTube свой свежий курс CS336: Language Modeling from Scratch
Это практический курс, в котором вся теория по LLM подается в процессе разработки собственной модели. Получается изучение end-to-end: от обработки данных и архитектуры трансформера до RL и эвала.
Ведет курс опытный профессор университета и сооснователь TogetherAI Перси Лианг.
Ну и главное: курс новый и вся информация актуальна на сегодняшний день. Он даже в самом Стэнфорде еще идет прямо сейчас, так что лекции и код продолжат выкладывать по ходу.
Репозиторий с дз и ноутбуками
Сайт курса
YouTube
Это практический курс, в котором вся теория по LLM подается в процессе разработки собственной модели. Получается изучение end-to-end: от обработки данных и архитектуры трансформера до RL и эвала.
Ведет курс опытный профессор университета и сооснователь TogetherAI Перси Лианг.
Ну и главное: курс новый и вся информация актуальна на сегодняшний день. Он даже в самом Стэнфорде еще идет прямо сейчас, так что лекции и код продолжат выкладывать по ходу.
Репозиторий с дз и ноутбуками
Сайт курса
YouTube


23.04.202511:39
Anthropic выкатили гайд по вайб-кодингу 😎
23 страницы посвящены тому, как программировать с агентами (в частности, с Claude Code). Собраны советы, best practices, примеры, антипримеры и даже готовые промпты.
Отдельное внимание уделяется безопасности данных и мульти-агентным процессам.
Полезно, если пользуетесь каким-нибудь подобным инструментом каждый день
PDF
23 страницы посвящены тому, как программировать с агентами (в частности, с Claude Code). Собраны советы, best practices, примеры, антипримеры и даже готовые промпты.
Отдельное внимание уделяется безопасности данных и мульти-агентным процессам.
Полезно, если пользуетесь каким-нибудь подобным инструментом каждый день


18.04.202509:03
OpenAI выкатили 32-страничный практический гайд по разработке агентов
Его создавали сами инженеры из продуктовых команд стартапа.
Внутри теоретические основы, шаблоны проектирования, лучшие тактики для безопасного развертывания и мониторинга, а главное много-много примеров.
Забираем мастрид на выходные: cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
Его создавали сами инженеры из продуктовых команд стартапа.
Внутри теоретические основы, шаблоны проектирования, лучшие тактики для безопасного развертывания и мониторинга, а главное много-много примеров.
Забираем мастрид на выходные: cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf


25.04.202515:10
Мотивации пост: сейчас в топ-1 по популярности на Hugging Face висит модель, которую разработала команда… из двух человек
Лаборатория называется Nari Labs, и она действительно состоит всего из двух исследователей. Несмотря на это, на этой неделе они со своей text2speech моделью DIA оставили позади Microsoft, Anthropic, Nvidia и другие корпорации.
Моделька у них правда крутая. В ней всего 1.6B параметров, но она генерирует из текста очень качественные диалоги. Сохраняет даже смех, кашель и вздохи. Плюс, пользователь может управлять эмоциями.
При этом у ребят действительно понятная и красивая карточка модели и хорошо оформленный код на гитхаб. Респект?
Лаборатория называется Nari Labs, и она действительно состоит всего из двух исследователей. Несмотря на это, на этой неделе они со своей text2speech моделью DIA оставили позади Microsoft, Anthropic, Nvidia и другие корпорации.
Моделька у них правда крутая. В ней всего 1.6B параметров, но она генерирует из текста очень качественные диалоги. Сохраняет даже смех, кашель и вздохи. Плюс, пользователь может управлять эмоциями.
При этом у ребят действительно понятная и красивая карточка модели и хорошо оформленный код на гитхаб. Респект?






13.05.202507:31
LLM превзошли врачей на новом бенчмарке OpenAI по медицине
HealthBench вышел вчера и состоит не просто из вопросов, а из синтетических диалогов между ассистентом и пользователем. Каждый такой диалог заканчивается сообщением пользователя, на который уже тестируемая модель должна ответить.
Таких диалогов аж 5000 и они разрабатывались совместно с 262 врачами из 26 разных областей. Ответы оцениваются по пяти осям: точность, полнота, понимание контекста, качество коммуникации и следование инструкциям.
Вот какие результаты получились:
➖ Самой эффективной моделью оказалась o3 с результатом 60%. Сразу за ней Grok-3 (54%) и Gemini 2.5 Pro (52%)
➖ У живых врачей результаты сильно ниже. Без опоры на ИИ-ответы люди набирают около 13%.
➖ При этом люди затрудняются даже улучшить ответы ИИ. Смотрите график 3: если дать медикам посмотреть на несколько ответов моделей из сентябрьского поколения и попросить написать на их основе идеальный ответ, люди улучшают средний скор на несколько процентных пунктов (0.31 против 0.28). Но с новыми апрельскими моделями так уже не работает: люди только ухудшают ответы ИИ (0.48 против 0.49).
Кстати, еще менее года назад GPT-3.5 Turbo выбивал всего 16%. Интересно, что будет еще через год.
cdn.openai.com/pdf/bd7a39d5-9e9f-47b3-903c-8b847ca650c7/healthbench_paper.pdf
HealthBench вышел вчера и состоит не просто из вопросов, а из синтетических диалогов между ассистентом и пользователем. Каждый такой диалог заканчивается сообщением пользователя, на который уже тестируемая модель должна ответить.
Таких диалогов аж 5000 и они разрабатывались совместно с 262 врачами из 26 разных областей. Ответы оцениваются по пяти осям: точность, полнота, понимание контекста, качество коммуникации и следование инструкциям.
Вот какие результаты получились:
➖ Самой эффективной моделью оказалась o3 с результатом 60%. Сразу за ней Grok-3 (54%) и Gemini 2.5 Pro (52%)
➖ У живых врачей результаты сильно ниже. Без опоры на ИИ-ответы люди набирают около 13%.
➖ При этом люди затрудняются даже улучшить ответы ИИ. Смотрите график 3: если дать медикам посмотреть на несколько ответов моделей из сентябрьского поколения и попросить написать на их основе идеальный ответ, люди улучшают средний скор на несколько процентных пунктов (0.31 против 0.28). Но с новыми апрельскими моделями так уже не работает: люди только ухудшают ответы ИИ (0.48 против 0.49).
Кстати, еще менее года назад GPT-3.5 Turbo выбивал всего 16%. Интересно, что будет еще через год.
cdn.openai.com/pdf/bd7a39d5-9e9f-47b3-903c-8b847ca650c7/healthbench_paper.pdf
12.05.202518:01
Китайский агент Manus с сегодняшнего дня открыт для всех без листа ожидания
Про самого агента и его особенности мы писали вот тут. Напоминаем, что это реально автономный и универсальный ИИ-агент, который по сути представляет из себя Cursor, Operator и Deep Research в одном флаконе.
Кроме того, агент частично бесплатный: каждый день они выдают по 300 кредитов на пользователя (это примерно одна задача средней сложности), а при регистрации единовременно начисляют 1000 кредитов.
Пробуем первыми тут
P.S. Для входа нужно включить VPN, а затем верифицировать номер телефона. С российскими номерами тоже работает, если выбрать в списке стран Казахстан.
Про самого агента и его особенности мы писали вот тут. Напоминаем, что это реально автономный и универсальный ИИ-агент, который по сути представляет из себя Cursor, Operator и Deep Research в одном флаконе.
Кроме того, агент частично бесплатный: каждый день они выдают по 300 кредитов на пользователя (это примерно одна задача средней сложности), а при регистрации единовременно начисляют 1000 кредитов.
Пробуем первыми тут
P.S. Для входа нужно включить VPN, а затем верифицировать номер телефона. С российскими номерами тоже работает, если выбрать в списке стран Казахстан.
29.04.202518:43
В NotebookLM теперь можно генерировать подкасты из статей на русском языке 🍯
Помните этот легендарный сервис от Google, в котором можно анализировать любые PDF/сайты/видео/ссылки, генерировать по ним конспекты, майндмапы и подкасты?
Так вот: раньше подкасты были доступны только на английском, но с сегодняшнего дня раскатили еще 50 языков. Среди них – русский.
Заходим -> кидаем источник -> тыкаем "Audio Overview" -> получаем подкаст с двумя ведущими по теме в формате вопрос-ответ.
Помните этот легендарный сервис от Google, в котором можно анализировать любые PDF/сайты/видео/ссылки, генерировать по ним конспекты, майндмапы и подкасты?
Так вот: раньше подкасты были доступны только на английском, но с сегодняшнего дня раскатили еще 50 языков. Среди них – русский.
Заходим -> кидаем источник -> тыкаем "Audio Overview" -> получаем подкаст с двумя ведущими по теме в формате вопрос-ответ.


15.05.202512:03
DeepSeek выпустили новую статью, в которой поделились большим списком инженерных хаков по обучению и инференсу моделей
Все, что не убивает, делает сильнее. DeepSeek в условиях санкций на оборудование уже собрали целый список того, что помогает им даже при большом дефиците железа содержать свои системы и обучать модели. Ну и, как истинные любители открытости, всеми этими фичами они решили поделиться просто так.
Топ-3:
1. Multi-head Latent Attention. Это метод сжатия KV-кеша, позволяющий радикально сократить объём памяти, необходимый для хранения ключей и значений из всех attention-голов. Идея в том, чтобы вместо хранения всех сырых K/V векторов для каждого хэдa проектировать их в компактный обучающийся латентный вектор небольшой размерности. В итоге вместо квадратичного роста хранимых данных получается линейный.
2. FP8 Mixed-Precision Training и Inference. Инженерная стратегия, которая позволяет при обучении модели одновременно использовать и более легкие числа в формате FP8, и более точные в FP16 / FP22/FP32. Так мы балансируем между производительностью и стабильностью, а затраты и энергопотребление падают почти в два раза.
3. Multi-Token Prediction. Это значит, что вместо генерации по одному токену модель пытается предсказать сразу несколько (например 2–4) следующих токена. Токены-кандидаты генерирует отдельный легковесный слой, а основная модель их просто сверяет с истинным декодингом. Если совпадают – принимаются без дорасчёта. Это дает ускорение инференса до 1.8х без потерь в качестве.
В статье – еще несколько интересных советов (некоторые мы даже уже разбирали во время опенсорса DeepSeek), так что трушным инженерам советуем почитать полностью.
Мир им: строгие запреты на ввоз железа
Они всему миру: детальные открытые советы по оптимизации этого железа
Респект же
Все, что не убивает, делает сильнее. DeepSeek в условиях санкций на оборудование уже собрали целый список того, что помогает им даже при большом дефиците железа содержать свои системы и обучать модели. Ну и, как истинные любители открытости, всеми этими фичами они решили поделиться просто так.
Топ-3:
1. Multi-head Latent Attention. Это метод сжатия KV-кеша, позволяющий радикально сократить объём памяти, необходимый для хранения ключей и значений из всех attention-голов. Идея в том, чтобы вместо хранения всех сырых K/V векторов для каждого хэдa проектировать их в компактный обучающийся латентный вектор небольшой размерности. В итоге вместо квадратичного роста хранимых данных получается линейный.
2. FP8 Mixed-Precision Training и Inference. Инженерная стратегия, которая позволяет при обучении модели одновременно использовать и более легкие числа в формате FP8, и более точные в FP16 / FP22/FP32. Так мы балансируем между производительностью и стабильностью, а затраты и энергопотребление падают почти в два раза.
3. Multi-Token Prediction. Это значит, что вместо генерации по одному токену модель пытается предсказать сразу несколько (например 2–4) следующих токена. Токены-кандидаты генерирует отдельный легковесный слой, а основная модель их просто сверяет с истинным декодингом. Если совпадают – принимаются без дорасчёта. Это дает ускорение инференса до 1.8х без потерь в качестве.
В статье – еще несколько интересных советов (некоторые мы даже уже разбирали во время опенсорса DeepSeek), так что трушным инженерам советуем почитать полностью.
Мир им: строгие запреты на ввоз железа
Они всему миру: детальные открытые советы по оптимизации этого железа
Респект же






04.05.202509:00
Исследователи из Университета Карнеги-Меллон создали IT-компанию, полностью состоящую из ИИ-агентов. Вот что из этого вышло
Команда исследователей из CMU запустила необычный эксперимент: они создали автономную виртуальную среду, имитирующую небольшую software компанию, и поместили на "реальные" рабочие места современных LLM-агентов. Все оформили в виде бенчмарка и назвали TheAgentCompany.
По сути агенту необходимо делать все то же, что делает типичный работчик IT (картинка 1): писать код, использовать терминал, рыться в браузере и Google Drive, взамодействовать с коллегами в мессенджере, пользоваться GitLab и Jira. Выполнение всех задач, кстати, оценивалось по чекпоинтам, а не просто "выполнил/не выполнил" (картинка 2) + учитывали итоговую стоимость по токенам.
В компании успели поработать Claude 3.5 Sonnet, Gemini-2.0 Flash, GPT-4o, Gemini-1.5-Pro, Llama-3.3 и 3.1, Qwen-2.5 и другие. Задачи покрывали SWE, PM, HR и еще несколько классических сфер. Всего 175 тасок, рассчитанных на 3000 часов труда 20 живых людей.
Результаты в таблицах на картинке 3. Как видите, даже лучший Claude 3.5 Sonnet справляется только с четвертью базовых обязанностей. Следующум идет Gemini 2.0 Flash, но уже с большим отрывом: 11.4%. Все остальные – меньше 9%.
Забавно, что GitLab и кодинг давались агентам довольно легко, а вот самым сложным оказались банальные заполнения форм, браузинг, планирование встреч и общение в мессенджере (им просто не объяснили, что надо мемы отправлять).
Хороший бенч, побольше бы таких
Статья | Код | Сайт (лидерборд внутри) | Результаты экспериментов
Команда исследователей из CMU запустила необычный эксперимент: они создали автономную виртуальную среду, имитирующую небольшую software компанию, и поместили на "реальные" рабочие места современных LLM-агентов. Все оформили в виде бенчмарка и назвали TheAgentCompany.
По сути агенту необходимо делать все то же, что делает типичный работчик IT (картинка 1): писать код, использовать терминал, рыться в браузере и Google Drive, взамодействовать с коллегами в мессенджере, пользоваться GitLab и Jira. Выполнение всех задач, кстати, оценивалось по чекпоинтам, а не просто "выполнил/не выполнил" (картинка 2) + учитывали итоговую стоимость по токенам.
В компании успели поработать Claude 3.5 Sonnet, Gemini-2.0 Flash, GPT-4o, Gemini-1.5-Pro, Llama-3.3 и 3.1, Qwen-2.5 и другие. Задачи покрывали SWE, PM, HR и еще несколько классических сфер. Всего 175 тасок, рассчитанных на 3000 часов труда 20 живых людей.
Результаты в таблицах на картинке 3. Как видите, даже лучший Claude 3.5 Sonnet справляется только с четвертью базовых обязанностей. Следующум идет Gemini 2.0 Flash, но уже с большим отрывом: 11.4%. Все остальные – меньше 9%.
Забавно, что GitLab и кодинг давались агентам довольно легко, а вот самым сложным оказались банальные заполнения форм, браузинг, планирование встреч и общение в мессенджере (им просто не объяснили, что надо мемы отправлять).
Хороший бенч, побольше бы таких
Статья | Код | Сайт (лидерборд внутри) | Результаты экспериментов


24.04.202517:40
❤️ – говорю спасибо, верю в карму
👍 – не говорю спасибо, <strike>я бессмертный</strike> берегу лимиты
👍 – не говорю спасибо, <strike>я бессмертный</strike> берегу лимиты


26.04.202509:16
Paper2Code: исследователи из корейского технологического института сделали мульти-агентный фрейморк для автоматической генерации кода по статьям
Боль каждого рисерчера – это статьи, к которым нет кода. Чтобы воспроизвести результат, нужно потратить пол жизни, и то – успех не гарантирован. А код авторы публикуют не так уж и часто. На примере NeurIPS, ICML и ICLR 2024: только 21.2% принятых работ имеют открытые репы.
Здесь авторы предлагают PaperCoder. Это мульти-агентная система, в которой процесс генерации репозитория разбит на три этапа:
1. Планирование. Составляется конспект статьи, UML-диаграммы классов + список файлов. Тут же создается config.yaml с гиперпараметрами и выстраивается план последовательности генерации.
2. Анализ. Здесь для каждого файла из составленного списка формируется file-level analysis — подробное описание целей, входов/выходов, взаимодействий и каких-то специфичных требований, если есть.
3. Ну и сама генерация на основании статьи, фазы планирования и анализа. Бонусом из первых двух пунктов получаем супер-подробную доку.
На каждом шаге работает отдельный агент. Это, по идее, могут быть разные LLM, но здесь по умолчанию на всех шагах стоит o3-mini-high (кроме валидации, там GPT-4o).
Тестировали на работах с тех же ICML/NeurIPS/ICLR 2024. Процент полностью успешной репликации – около 44% против 10-15 у базовых агентов. Если анализировать вручную, то в среднем для успешного запуска нужно менять всего 0.48 % строк. А еще PaperCoder давали потрогать исследователям, и в 85% случаев те сказали, что это лучше, чем писать с нуля, даже если нужно что-то дебажить.
Ирония только в том, что к статье Paper2Code... не выложили код. Но, вроде, обещают "скоро"
Боль каждого рисерчера – это статьи, к которым нет кода. Чтобы воспроизвести результат, нужно потратить пол жизни, и то – успех не гарантирован. А код авторы публикуют не так уж и часто. На примере NeurIPS, ICML и ICLR 2024: только 21.2% принятых работ имеют открытые репы.
Здесь авторы предлагают PaperCoder. Это мульти-агентная система, в которой процесс генерации репозитория разбит на три этапа:
1. Планирование. Составляется конспект статьи, UML-диаграммы классов + список файлов. Тут же создается config.yaml с гиперпараметрами и выстраивается план последовательности генерации.
2. Анализ. Здесь для каждого файла из составленного списка формируется file-level analysis — подробное описание целей, входов/выходов, взаимодействий и каких-то специфичных требований, если есть.
3. Ну и сама генерация на основании статьи, фазы планирования и анализа. Бонусом из первых двух пунктов получаем супер-подробную доку.
На каждом шаге работает отдельный агент. Это, по идее, могут быть разные LLM, но здесь по умолчанию на всех шагах стоит o3-mini-high (кроме валидации, там GPT-4o).
Тестировали на работах с тех же ICML/NeurIPS/ICLR 2024. Процент полностью успешной репликации – около 44% против 10-15 у базовых агентов. Если анализировать вручную, то в среднем для успешного запуска нужно менять всего 0.48 % строк. А еще PaperCoder давали потрогать исследователям, и в 85% случаев те сказали, что это лучше, чем писать с нуля, даже если нужно что-то дебажить.
Ирония только в том, что к статье Paper2Code... не выложили код. Но, вроде, обещают "скоро"


13.05.202509:59
Журналисты раскритиковали стиль управления Альтмана на основании того, как он… готовит
Нет, это не шутка. На выходных вышел еженедельный выпуск кулинарного шоу от Financial Times, гостем стал Сэм Альтман. У себя на кухне он вместе с журналистом готовил обычную овощную пасту.
Казалось бы, ничего не предвещало беды. Но вчера у того же FT внезапно вышла статья, в которой они в пух и прах раскритиковали CEO на основании его… кухни. Вот что пишут:
➖ Альтман неправильно использует оливковое масло. Оно у него якобы очень распиаренное и дорогое (21$), но он на нем жарит, а так делать «нельзя». Весь вкус, мол, теряется, и пользы от дорогого продукта становится не больше, чем он самого дешевого.
➖ На кухне стоит кофемашина за 2к долларов. Опять же очень распиаренная но, по словам журналистов, абсолютно бесполезная и глючная. Они называют эту вещь «деньгами на ветер» и «самой глупой покупкой».
➖ Ну и финалочка: журналистов не устроил нож. Он тоже выглядит дорогим и даже сделанным на заказ, но предприниматель «абсолютно не умеет им пользоваться».
В общем, Альтмана обвинили в том, что он транжира, жертва маркетинга и вообще не умеет управлять ни кухней, ни компанией.
«Его кухня – это мир неэффективности и непонимания. Сжигание денег это основа его жизни и его бизнеса»
Вот так и зови к себе журналистов на обед 🤷♂️
Нет, это не шутка. На выходных вышел еженедельный выпуск кулинарного шоу от Financial Times, гостем стал Сэм Альтман. У себя на кухне он вместе с журналистом готовил обычную овощную пасту.
Казалось бы, ничего не предвещало беды. Но вчера у того же FT внезапно вышла статья, в которой они в пух и прах раскритиковали CEO на основании его… кухни. Вот что пишут:
➖ Альтман неправильно использует оливковое масло. Оно у него якобы очень распиаренное и дорогое (21$), но он на нем жарит, а так делать «нельзя». Весь вкус, мол, теряется, и пользы от дорогого продукта становится не больше, чем он самого дешевого.
➖ На кухне стоит кофемашина за 2к долларов. Опять же очень распиаренная но, по словам журналистов, абсолютно бесполезная и глючная. Они называют эту вещь «деньгами на ветер» и «самой глупой покупкой».
➖ Ну и финалочка: журналистов не устроил нож. Он тоже выглядит дорогим и даже сделанным на заказ, но предприниматель «абсолютно не умеет им пользоваться».
В общем, Альтмана обвинили в том, что он транжира, жертва маркетинга и вообще не умеет управлять ни кухней, ни компанией.
«Его кухня – это мир неэффективности и непонимания. Сжигание денег это основа его жизни и его бизнеса»
Вот так и зови к себе журналистов на обед 🤷♂️


28.04.202507:08
А вы тоже заметили, что после последних обновлений 4o превратился в ванильный раф с сиропом?
Если вы думали, что вам показалось, то нет. Даже Альтман сегодня в твиттере признался, что «что-то мы переборщили с лестью» и пообещал, что на этой неделе все исправят. Пока наслаждаемся комплиментами 😛
Если вы думали, что вам показалось, то нет. Даже Альтман сегодня в твиттере признался, что «что-то мы переборщили с лестью» и пообещал, что на этой неделе все исправят. Пока наслаждаемся комплиментами 😛
Көбірек мүмкіндіктерді ашу үшін кіріңіз.