25.03.202504:30
#щетников
Почему Сибирский турнир юных физиков живёт и здравствует, а про оcтальные региональные турниры это трудно сказать?
Здесь есть несколько причин, и я постараюсь их перечислить. Но если сказать кратко, то ответ бывет простым: потому что нынешний СибТЮФ именно таким был задуман и реализован в 2010–2015 году, и это его устройство действует. А теперь по порядку.
1) Прежде всего, у нашего турнира — разумные цели. Мы проводим его не для того, чтобы «дети поиграли в исследования», но для того, чтобы школьники чему-то полезному научились. СибТЮФ проводится в конце января, а не до Нового года, как некоторые другие региональные турниры. Это значит, что у команд есть пять месяцев на подготовку. Плюс к этому, многие команды участвуют после этого в РосТЮФ. Это позволяет тренерам организовать систематическую работу над задачами, чтобы ТЮФ стал не скоротечным разовым мероприятием, но частью жизни, постоянно действующим школьным или внешкольным кружком.
2) У нашего турнира — осмысленная система управления. Он принадлежит не какому-то «оргкомитету», но Общественному движению СибТЮФ. Участники этого движения (в основном это тренеры команд, но не только) раз в год собираются на общее собрание. Здесь выбирается исполком, управляющий текущими делами турнира, и президент, представляющий турнир во внешнем мире. Любые изменения в правилах и регламенте турнира принимаются Советом тренеров (по одному голосу от каждой команды, участвовавшей в последнем турнире) путём голосования. Общественное движение СибТЮФ взаимодействует с НГУ, с фондом «Образование» и т.д. — но все свои вопросы решает самостоятельно и никому не подчиняется; никто не может навязать ему, каким быть турниру. Мы не просим, но сотрудничаем — и поэтому нас уважают.
3) В турнире с самого начала его существования налажена методическая работа с тренерами. (Надо заметить, что так же обстояли дела и в первой инкарнации турнира при Шелесте.) Многие тренеры прошли через учебные семинары, на которых они сами решали исследовательские задачи, готовили презентации, участвовали в учебных боях, учились ставить оценки. Об этом я ещё напишу отдельно, но уже сейчас скажу, что именно поэтому наши тренеры — самые лучшие и беспристрастные члены жюри, наши команды играют в верхушке РосТЮФ и регулярно выигрывают финалы.
4) В нашем турнире принят открытый, дружелюбный стиль жизни и общения. Наши команды любят играть друг с другом тренировочные бои, они в процессе публикуют на своих страничках в контакте фотографии своих установок и опытов, и понимают, что такая открытость продвигает всех, и турнир от этого становится только интереснее. И конечно, я надеюсь, что этот стиль сохранится и дальше.
Почему Сибирский турнир юных физиков живёт и здравствует, а про оcтальные региональные турниры это трудно сказать?
Здесь есть несколько причин, и я постараюсь их перечислить. Но если сказать кратко, то ответ бывет простым: потому что нынешний СибТЮФ именно таким был задуман и реализован в 2010–2015 году, и это его устройство действует. А теперь по порядку.
1) Прежде всего, у нашего турнира — разумные цели. Мы проводим его не для того, чтобы «дети поиграли в исследования», но для того, чтобы школьники чему-то полезному научились. СибТЮФ проводится в конце января, а не до Нового года, как некоторые другие региональные турниры. Это значит, что у команд есть пять месяцев на подготовку. Плюс к этому, многие команды участвуют после этого в РосТЮФ. Это позволяет тренерам организовать систематическую работу над задачами, чтобы ТЮФ стал не скоротечным разовым мероприятием, но частью жизни, постоянно действующим школьным или внешкольным кружком.
2) У нашего турнира — осмысленная система управления. Он принадлежит не какому-то «оргкомитету», но Общественному движению СибТЮФ. Участники этого движения (в основном это тренеры команд, но не только) раз в год собираются на общее собрание. Здесь выбирается исполком, управляющий текущими делами турнира, и президент, представляющий турнир во внешнем мире. Любые изменения в правилах и регламенте турнира принимаются Советом тренеров (по одному голосу от каждой команды, участвовавшей в последнем турнире) путём голосования. Общественное движение СибТЮФ взаимодействует с НГУ, с фондом «Образование» и т.д. — но все свои вопросы решает самостоятельно и никому не подчиняется; никто не может навязать ему, каким быть турниру. Мы не просим, но сотрудничаем — и поэтому нас уважают.
3) В турнире с самого начала его существования налажена методическая работа с тренерами. (Надо заметить, что так же обстояли дела и в первой инкарнации турнира при Шелесте.) Многие тренеры прошли через учебные семинары, на которых они сами решали исследовательские задачи, готовили презентации, участвовали в учебных боях, учились ставить оценки. Об этом я ещё напишу отдельно, но уже сейчас скажу, что именно поэтому наши тренеры — самые лучшие и беспристрастные члены жюри, наши команды играют в верхушке РосТЮФ и регулярно выигрывают финалы.
4) В нашем турнире принят открытый, дружелюбный стиль жизни и общения. Наши команды любят играть друг с другом тренировочные бои, они в процессе публикуют на своих страничках в контакте фотографии своих установок и опытов, и понимают, что такая открытость продвигает всех, и турнир от этого становится только интереснее. И конечно, я надеюсь, что этот стиль сохранится и дальше.


23.03.202506:00
#физика
Молнии, бьющие из грозовых облаков на землю, заряжают «земной конденсатор» и создают электрическое поле земли.
Скоро на наших платформах будет опубликован ролик «Атмосферное электричество».
А нашим подписчикам в Boosty мы предлагаем посмотреть этот выпуск прямо сейчас!
[Поддержите нас]
Молнии, бьющие из грозовых облаков на землю, заряжают «земной конденсатор» и создают электрическое поле земли.
Скоро на наших платформах будет опубликован ролик «Атмосферное электричество».
А нашим подписчикам в Boosty мы предлагаем посмотреть этот выпуск прямо сейчас!
[Поддержите нас]
21.03.202506:31
#закадром
Среди прочих проектов, объединенных словом и смыслом GetAClass, мы время от времени делаем программы с исследователями и инженерами — просто чтобы делиться тем энтузиазмом, что часто заполняет пространство между извилинами головного мозга после хороших (порой случайных) разговоров с большими и умными людьми.
На начало 2025 года у нас снято 16 программ цикла «Дайте подумать!» и еще 10 программ цикла «Просто наука» (тут интервью у ученых берут школьники).
Если руки дойдут, то в этом году еще несколько программ «Дайте подумать!» сделаем — типа вот таких, о которых уже в этом канале говорили:
- Григорий Фалькович. Информация к выживанию
- Григорий Фалькович. Сказка сказывается, как теорема доказывается
- Михаил Цодыкс. Вспомнить все
- Андрей Щетников. Свободный художник
- Шимон Левит. Как учить физика
- Эдуард Коркотян. Эволюция сознания
- Ульяна Шиманович. Амилоиды
- Игорь Колоколов. Профессия физик-теоретик
- Игорь Колоколов. Физика атмосферы
- Илья Бетеров. Квантовый компьютер. Часть 1 - Физические принципы
- Илья Бетеров. Квантовый компьютер. Часть 2 - Приложения
- Карл Сабельфельд. Профессия математик
Среди прочих проектов, объединенных словом и смыслом GetAClass, мы время от времени делаем программы с исследователями и инженерами — просто чтобы делиться тем энтузиазмом, что часто заполняет пространство между извилинами головного мозга после хороших (порой случайных) разговоров с большими и умными людьми.
На начало 2025 года у нас снято 16 программ цикла «Дайте подумать!» и еще 10 программ цикла «Просто наука» (тут интервью у ученых берут школьники).
Если руки дойдут, то в этом году еще несколько программ «Дайте подумать!» сделаем — типа вот таких, о которых уже в этом канале говорили:
- Григорий Фалькович. Информация к выживанию
- Григорий Фалькович. Сказка сказывается, как теорема доказывается
- Михаил Цодыкс. Вспомнить все
- Андрей Щетников. Свободный художник
- Шимон Левит. Как учить физика
- Эдуард Коркотян. Эволюция сознания
- Ульяна Шиманович. Амилоиды
- Игорь Колоколов. Профессия физик-теоретик
- Игорь Колоколов. Физика атмосферы
- Илья Бетеров. Квантовый компьютер. Часть 1 - Физические принципы
- Илья Бетеров. Квантовый компьютер. Часть 2 - Приложения
- Карл Сабельфельд. Профессия математик


24.03.202507:00
#щетников
Почему одни живут так, а другие иначе?
Встал сегодня рано, пока завтракал, слушал Любарского, «Почему одни страны богатые, а другие бедные?». Бог с ними, со странами, меня больше интересует вопрос «почему одни команды турнира юных физиков растут и делают успехи, а другие нет?».
И ответ здесь для меня очевиден: растут команды, тренеры которых задумываются, что надо делать, чтобы команда росла, где для тренера именно этот вопрос является приоритетом, с которым согласуется текущая работа. А где этого нет, там нет и роста. Если тренер ставит такую цель, он идёт вперёд сам, участвует в семинарах тренеров, размышляет о том, что он делает - и ведёт за собой команду.
Это не так сильно зависит от полученного им образования (физфак университета или пединститут, хотя образование в плане физики здесь разнится очень сильно), как от сознательной постановки цели и стремления к движению вперёд. А если этого нет, то и на какие-то успехи рассчитывать не приходится. Всё определяется тем, видят ли люди своё будущее или нет. А остальное приложится.
{Иллюстрация предложена ChatGPT в ответ на текст этого поста в качестве промпта}
Почему одни живут так, а другие иначе?
Встал сегодня рано, пока завтракал, слушал Любарского, «Почему одни страны богатые, а другие бедные?». Бог с ними, со странами, меня больше интересует вопрос «почему одни команды турнира юных физиков растут и делают успехи, а другие нет?».
И ответ здесь для меня очевиден: растут команды, тренеры которых задумываются, что надо делать, чтобы команда росла, где для тренера именно этот вопрос является приоритетом, с которым согласуется текущая работа. А где этого нет, там нет и роста. Если тренер ставит такую цель, он идёт вперёд сам, участвует в семинарах тренеров, размышляет о том, что он делает - и ведёт за собой команду.
Это не так сильно зависит от полученного им образования (физфак университета или пединститут, хотя образование в плане физики здесь разнится очень сильно), как от сознательной постановки цели и стремления к движению вперёд. А если этого нет, то и на какие-то успехи рассчитывать не приходится. Всё определяется тем, видят ли люди своё будущее или нет. А остальное приложится.
{Иллюстрация предложена ChatGPT в ответ на текст этого поста в качестве промпта}
22.03.202519:53
#щетников
Под каким роликом 95% комментариев — это бессмысленный бред доморощенных скептиков?
Конечно же, под этим!
«Физики до сих пор не знают, что такой электрический ток», и всё такое прочее. А ролик получился хороший, и cнят он не для того, чтобы разговаривать с людьми, ничего не понимающими в физике и считающих себя самыми умными, но как простое школьное введение в этот раздел учения об электричестве.
Под каким роликом 95% комментариев — это бессмысленный бред доморощенных скептиков?
Конечно же, под этим!
«Физики до сих пор не знают, что такой электрический ток», и всё такое прочее. А ролик получился хороший, и cнят он не для того, чтобы разговаривать с людьми, ничего не понимающими в физике и считающих себя самыми умными, но как простое школьное введение в этот раздел учения об электричестве.
20.03.202508:33
#physics
#физика
В далёком 2007 году на ХХ Международном турнире юных физиков игралась задача «Духовое ружьё», где надо было исследовать движение снаряда в духовом ружье и определить условия, при которых достигается максимальная скорость, если воздух нагнетается ртом. В общем, почувствовать себя охотниками из тропических стран, стреляющими отравленными колючками.
И мы взяли длинную водопроводную трубу из пластика, зарядили в неё маркер с резиновым наконечником, резкий выдох — и маркер с силой бьёт по мишени! Но мы не просто охотники: во время выстрела мы измерили избыточное давление внутри трубы, создаваемое лёгкими, и в максимуме оно составило 15 килопаскалей или 0,15 атмосферы.
Пусть длина трубы равна L, а её поперечное сечение S. В самой простой модели будем считать, что избыточное давление p остаётся постоянным во время движения снаряда. Тогда сила давления pS совершает на длине трубы работу pSL, которая переходит в кинетическую энергию снаряда mV²/2. Получаем квадрат скорости V² = 2pSL/m. Мы измерили и подставили в эту формулу размеры трубы и массу маркера и расчётная скорость составила 23 м/с. И точно такое же значение скорости было получено в эксперименте!
Как же увеличить скорость вылета? Избыточное давление поднять выше 15 кПа с помощью лёгких не удаётся. Объём трубы SL нельзя сделать больше объёма лёгких, иначе воздуха на выстрел не хватит. На деле это ограничение ещё сильнее, потому что за время выстрела выдуть под постоянным давлением можно только небольшую долю воздуха, запасённого на вдохе. Остаётся уменьшать массу снаряда, и сначала кажется, что за счёт этого можно достичь сколь угодно большой скорости вылета .
Но ведь мы разгоняем не только снаряд, но и воздух в трубке, масса которого равна ρSL. Подставим эту массу в формулу и получаем V² = 2p/ρ. Наша модель даёт предельную скорость вылета 150 м/с — почти половину скорости звука! Трудно поверить, но если дуть изо всей силы через трубочку с тонким соплом, воздух вылетает из неё со скоростью больше 500 км/ч!
Смотрите наш новый англоязычный ролик «Air gun experiments» и не забывайте ставить лайки!
P.S. По этой ссылке можно посмотреть русскоязычный выпуск «Опыты с духовым ружьём» на различных платформах.
[Поддержите нас]
#физика
В далёком 2007 году на ХХ Международном турнире юных физиков игралась задача «Духовое ружьё», где надо было исследовать движение снаряда в духовом ружье и определить условия, при которых достигается максимальная скорость, если воздух нагнетается ртом. В общем, почувствовать себя охотниками из тропических стран, стреляющими отравленными колючками.
И мы взяли длинную водопроводную трубу из пластика, зарядили в неё маркер с резиновым наконечником, резкий выдох — и маркер с силой бьёт по мишени! Но мы не просто охотники: во время выстрела мы измерили избыточное давление внутри трубы, создаваемое лёгкими, и в максимуме оно составило 15 килопаскалей или 0,15 атмосферы.
Пусть длина трубы равна L, а её поперечное сечение S. В самой простой модели будем считать, что избыточное давление p остаётся постоянным во время движения снаряда. Тогда сила давления pS совершает на длине трубы работу pSL, которая переходит в кинетическую энергию снаряда mV²/2. Получаем квадрат скорости V² = 2pSL/m. Мы измерили и подставили в эту формулу размеры трубы и массу маркера и расчётная скорость составила 23 м/с. И точно такое же значение скорости было получено в эксперименте!
Как же увеличить скорость вылета? Избыточное давление поднять выше 15 кПа с помощью лёгких не удаётся. Объём трубы SL нельзя сделать больше объёма лёгких, иначе воздуха на выстрел не хватит. На деле это ограничение ещё сильнее, потому что за время выстрела выдуть под постоянным давлением можно только небольшую долю воздуха, запасённого на вдохе. Остаётся уменьшать массу снаряда, и сначала кажется, что за счёт этого можно достичь сколь угодно большой скорости вылета .
Но ведь мы разгоняем не только снаряд, но и воздух в трубке, масса которого равна ρSL. Подставим эту массу в формулу и получаем V² = 2p/ρ. Наша модель даёт предельную скорость вылета 150 м/с — почти половину скорости звука! Трудно поверить, но если дуть изо всей силы через трубочку с тонким соплом, воздух вылетает из неё со скоростью больше 500 км/ч!
Смотрите наш новый англоязычный ролик «Air gun experiments» и не забывайте ставить лайки!
P.S. По этой ссылке можно посмотреть русскоязычный выпуск «Опыты с духовым ружьём» на различных платформах.
[Поддержите нас]




23.03.202513:33
#закадром
Сегодня наш англоязычный канал «GetAClass — Physics» пересек психологическую отметку в 50 000 подписчиков.
При этом, самый популярный ролик «Bernoulli’s principle» набрал 2,3 миллиона просмотров, повторив, в некотором смысле, неожиданный успех своего русскоязычного оригинала «Закон Бернулли», набравшего уже 9,3 миллиона просмотров.
В общем, физика, если о ней говорить интересно, вполне может конкурировать с котиками как на русском, так и на английском языках ))
Сегодня наш англоязычный канал «GetAClass — Physics» пересек психологическую отметку в 50 000 подписчиков.
При этом, самый популярный ролик «Bernoulli’s principle» набрал 2,3 миллиона просмотров, повторив, в некотором смысле, неожиданный успех своего русскоязычного оригинала «Закон Бернулли», набравшего уже 9,3 миллиона просмотров.
В общем, физика, если о ней говорить интересно, вполне может конкурировать с котиками как на русском, так и на английском языках ))
22.03.202519:52
#закадром
Всем привет!
Представляем вашему вниманию новые рубрики: #щетников и #колчин.
С такими hashtags будем публиковать здесь все посты Андрея и Алексея в сообществах наших YouTube каналов и посты из их соцсетей, имеющие непосредственное отношение к GetAClass.
Читайте, получайте интеллектуальное удовольствие, думайте, спорьте в комментариях и вообще. А Андрей с Алексеем будут ваши комментари читать и отвечать, еслибудете себя хорошо вести захотят, конечно…
Всем привет!
Представляем вашему вниманию новые рубрики: #щетников и #колчин.
С такими hashtags будем публиковать здесь все посты Андрея и Алексея в сообществах наших YouTube каналов и посты из их соцсетей, имеющие непосредственное отношение к GetAClass.
Читайте, получайте интеллектуальное удовольствие, думайте, спорьте в комментариях и вообще. А Андрей с Алексеем будут ваши комментари читать и отвечать, если
18.03.202508:33
#физика
Недавно благодаря нашему другу и активному участнику обсуждений наших роликов Александру Бердникову мы открыли для себя сайт профессора математики Пенсильванского университета Марка Леви с замечательным разделом «Mathematical Curiosities» — «Математические диковинки». И там есть статья, мимо которой мы пройти не смогли, — доказательство формулы косинуса разности на основе принципа невозможности вечного двигателя.
Идея заключается в следующем: работа, совершаемая силой тяжести, не может зависеть от пути, по которому перемещается тело из начальной точки в конечную. Если бы это было не так, мы прошли бы до конечной точки по пути, на котором работа силы тяжести больше, а затем вернулись в исходную точку по другому пути, при этом работа силы тяжести меняет знак на противоположный, но по величине остаётся меньше, чем на первом пути. Тогда при обходе замкнутого контура работа оказывается положительной, и мы получаем вечный двигатель, что невозможно.
А теперь выберем в поле тяжести два специальных пути: пусть один из них проходит по гипотенузе, а другой — по двум катетам прямоугольного треугольника. Приравнивая работу силы тяжести по этим путям, мы легко получаем формулу косинуса разности двух углов!
И тут возникает вопрос: неужели вся тригонометрия выводится из невозможности вечного двигателя? Мы, конечно, знаем, что физика часто помогает математике, но не настолько же! Все тригонометрические соотношения выводятся чисто геометрически из определений основных тригонометрических функций в прямоугольном треугольнике и теоремы Пифагора. В чём же тут дело?
Смотрите наш новый ролик «Косинус разности и вечный двигатель», размышляйте о взаимосвязи и взаимопроникновении физики и математики и не забывайте ставить лайки!
P.S. По этой ссылке можно найти данный выпуск на различных платформах.
[Поддержите нас]
Недавно благодаря нашему другу и активному участнику обсуждений наших роликов Александру Бердникову мы открыли для себя сайт профессора математики Пенсильванского университета Марка Леви с замечательным разделом «Mathematical Curiosities» — «Математические диковинки». И там есть статья, мимо которой мы пройти не смогли, — доказательство формулы косинуса разности на основе принципа невозможности вечного двигателя.
Идея заключается в следующем: работа, совершаемая силой тяжести, не может зависеть от пути, по которому перемещается тело из начальной точки в конечную. Если бы это было не так, мы прошли бы до конечной точки по пути, на котором работа силы тяжести больше, а затем вернулись в исходную точку по другому пути, при этом работа силы тяжести меняет знак на противоположный, но по величине остаётся меньше, чем на первом пути. Тогда при обходе замкнутого контура работа оказывается положительной, и мы получаем вечный двигатель, что невозможно.
А теперь выберем в поле тяжести два специальных пути: пусть один из них проходит по гипотенузе, а другой — по двум катетам прямоугольного треугольника. Приравнивая работу силы тяжести по этим путям, мы легко получаем формулу косинуса разности двух углов!
И тут возникает вопрос: неужели вся тригонометрия выводится из невозможности вечного двигателя? Мы, конечно, знаем, что физика часто помогает математике, но не настолько же! Все тригонометрические соотношения выводятся чисто геометрически из определений основных тригонометрических функций в прямоугольном треугольнике и теоремы Пифагора. В чём же тут дело?
Смотрите наш новый ролик «Косинус разности и вечный двигатель», размышляйте о взаимосвязи и взаимопроникновении физики и математики и не забывайте ставить лайки!
P.S. По этой ссылке можно найти данный выпуск на различных платформах.
[Поддержите нас]
23.03.202513:33
22.03.202508:32
#physics
#физика
Подвесим цепочку за концы к перекладине так, чтобы вниз свисала достаточно длинная петля, при этом ширина петли должна быть немного больше внутреннего диаметра кольца. Держим кольцо двумя пальцами горизонтально, пропускаем сквозь него петлю и поднимаем кольцо наверх. Что произойдёт, если теперь отпустить кольцо?
Кажется, что оно будет скользить вниз по цепочке и упадёт на стол, и обычно так и получается. И вот тут-то и скрыт маленький секрет мастерства — можно отпустить кольцо так, что цепочка завяжется на нём узлом, и кольцо повиснет, не долетев до стола!
А в чём заключается этот секрет, как выглядит движение кольца по цепочке на скоростной съёмке, и при чём здесь теория волн, вы узнаете из нашего нового англоязычного ролика «Chain and ring trick».
P.S. Смотрите также русскоязычную версию «Фокус с цепочкой и кольцом», показывайте его друзьям и близким и не забывайте ставить лайки!
[Поддержите нас]
#физика
Подвесим цепочку за концы к перекладине так, чтобы вниз свисала достаточно длинная петля, при этом ширина петли должна быть немного больше внутреннего диаметра кольца. Держим кольцо двумя пальцами горизонтально, пропускаем сквозь него петлю и поднимаем кольцо наверх. Что произойдёт, если теперь отпустить кольцо?
Кажется, что оно будет скользить вниз по цепочке и упадёт на стол, и обычно так и получается. И вот тут-то и скрыт маленький секрет мастерства — можно отпустить кольцо так, что цепочка завяжется на нём узлом, и кольцо повиснет, не долетев до стола!
А в чём заключается этот секрет, как выглядит движение кольца по цепочке на скоростной съёмке, и при чём здесь теория волн, вы узнаете из нашего нового англоязычного ролика «Chain and ring trick».
P.S. Смотрите также русскоязычную версию «Фокус с цепочкой и кольцом», показывайте его друзьям и близким и не забывайте ставить лайки!
[Поддержите нас]
15.03.202503:03
#physics
#физика
Если у вас есть большая морская раковина, приставьте её к уху, оставив небольшую щель, и вы услышите «шум моря». Ну, а если вам не повезло, и раковины нет, замените её обычной стеклянной банкой — «шум моря» будет ничуть не хуже, поэтому закрадывается подозрение, что море здесь не при чём. Прижмите банку вплотную к голове, и звук пропадёт: банка действует как резонатор, выбирая из внешнего шума какие-то звуки и усиливая их.
Сделаем ещё один простой опыт — возьмём пластиковую бутылку, подуем на край горлышка, и бутылка издаёт низкий однотонный звук. Это явление хорошо описывается моделью, которую предложил в 1863 году в своей книге «Учение о слуховых ощущениях как физиологическая основа для теории музыки» выдающийся немецкий учёный Герман Гельмгольц.
Он рассуждал так: когда бутылка звучит, воздух в горлышке быстро движется, а внутри бутылки он сжимается и расширяется, оставаясь почти неподвижным, и это похоже на колебания груза на пружине. Воздушная «пробка» в горлышке играет роль груза, а воздух внутри сосуда — роль пружины. Когда «пробка» входит внутрь, воздух в сосуде сжимается, давление становится больше атмосферного, и избыточное давление выталкивает «пробку» назад. А когда "пробка" выходит наружу, давление в сосуде понижается, и избыток атмосферного давления заталкивает «пробку» назад. При этом «пробка» каждый раз по инерции проскакивает положение равновесия и совершает периодические колебания.
Из этой модели следует, что квадрат частоты колебаний пропорционален площади поперечного сечения горлышка и обратно пропорционален длине горлышка и объёму сосуда: чем длиннее горлышко, тем больше масса «пробки»; чем больше объём, тем меньше жёсткость воздушной пружины. Мы проверили на опыте зависимость частоты звука от всех трёх параметров — длины горлышка, его сечения и объёма бутылки, и получили хорошее согласие с теорией.
Конечно, воздушная «пробка» существует только в модели, а на деле воздух приходит в движение и рядом с горлышком, и физики в этом случае говорят, что эффективная длина горлышка несколько больше. Ещё в модели предполагается, что давление внутри сосуда всюду одно и то же, и это хорошее приближение: для характерных частот 150 Гц длина звуковой волны составляет 2 метра, что гораздо больше размеров бутылки. Интересно, что в сферических резонаторах, которые сам Гельмгольц использовал в своих исследованиях физиологии слуха, вместо горлышка было сделано обычное отверстие.
Но вернёмся к способности резонатора выделять и усиливать только определённые звуки. Мы включили динамик, опустили внутрь бутылки микрофон и сняли её амплитудно-частотную характеристику. На графике получился достаточно узкий резонансный пик, соответствующий собственной частоте колебаний 210 Гц. Теперь подадим на динамик белый шум с очень широким спектром, и резонатор выделяет звук на частотах, близких к собственной, тот самый «шум моря».
Из резонатора Гельмгольца можно сделать настоящую звуковую ракету. А его главное практическое применение — не усиление, а гашение шума выхлопных систем автомобилей и мотоциклов.
Смотрите наш новый англоязычный ролик «Helmholtz resonator», слушайте шум моря и не забывайте ставить лайки!
P.S. По этой ссылке можно найти русскоязычный выпуск «Резонатор Гельмгольца» на различных платформах.
[Поддержите нас]
#физика
Если у вас есть большая морская раковина, приставьте её к уху, оставив небольшую щель, и вы услышите «шум моря». Ну, а если вам не повезло, и раковины нет, замените её обычной стеклянной банкой — «шум моря» будет ничуть не хуже, поэтому закрадывается подозрение, что море здесь не при чём. Прижмите банку вплотную к голове, и звук пропадёт: банка действует как резонатор, выбирая из внешнего шума какие-то звуки и усиливая их.
Сделаем ещё один простой опыт — возьмём пластиковую бутылку, подуем на край горлышка, и бутылка издаёт низкий однотонный звук. Это явление хорошо описывается моделью, которую предложил в 1863 году в своей книге «Учение о слуховых ощущениях как физиологическая основа для теории музыки» выдающийся немецкий учёный Герман Гельмгольц.
Он рассуждал так: когда бутылка звучит, воздух в горлышке быстро движется, а внутри бутылки он сжимается и расширяется, оставаясь почти неподвижным, и это похоже на колебания груза на пружине. Воздушная «пробка» в горлышке играет роль груза, а воздух внутри сосуда — роль пружины. Когда «пробка» входит внутрь, воздух в сосуде сжимается, давление становится больше атмосферного, и избыточное давление выталкивает «пробку» назад. А когда "пробка" выходит наружу, давление в сосуде понижается, и избыток атмосферного давления заталкивает «пробку» назад. При этом «пробка» каждый раз по инерции проскакивает положение равновесия и совершает периодические колебания.
Из этой модели следует, что квадрат частоты колебаний пропорционален площади поперечного сечения горлышка и обратно пропорционален длине горлышка и объёму сосуда: чем длиннее горлышко, тем больше масса «пробки»; чем больше объём, тем меньше жёсткость воздушной пружины. Мы проверили на опыте зависимость частоты звука от всех трёх параметров — длины горлышка, его сечения и объёма бутылки, и получили хорошее согласие с теорией.
Конечно, воздушная «пробка» существует только в модели, а на деле воздух приходит в движение и рядом с горлышком, и физики в этом случае говорят, что эффективная длина горлышка несколько больше. Ещё в модели предполагается, что давление внутри сосуда всюду одно и то же, и это хорошее приближение: для характерных частот 150 Гц длина звуковой волны составляет 2 метра, что гораздо больше размеров бутылки. Интересно, что в сферических резонаторах, которые сам Гельмгольц использовал в своих исследованиях физиологии слуха, вместо горлышка было сделано обычное отверстие.
Но вернёмся к способности резонатора выделять и усиливать только определённые звуки. Мы включили динамик, опустили внутрь бутылки микрофон и сняли её амплитудно-частотную характеристику. На графике получился достаточно узкий резонансный пик, соответствующий собственной частоте колебаний 210 Гц. Теперь подадим на динамик белый шум с очень широким спектром, и резонатор выделяет звук на частотах, близких к собственной, тот самый «шум моря».
Из резонатора Гельмгольца можно сделать настоящую звуковую ракету. А его главное практическое применение — не усиление, а гашение шума выхлопных систем автомобилей и мотоциклов.
Смотрите наш новый англоязычный ролик «Helmholtz resonator», слушайте шум моря и не забывайте ставить лайки!
P.S. По этой ссылке можно найти русскоязычный выпуск «Резонатор Гельмгольца» на различных платформах.
[Поддержите нас]
Паказана 1 - 12 з 12
Увайдзіце, каб разблакаваць больш функцый.