

25.04.202512:04
вымер
22.04.202521:45
вНиМаНиЕ, кОд КрАсНыЙ🔴 эТи УбЛюДкИ
Вдруг решили что учится под человечность это ужасная идея, и вообще пусть ллм пишут с машинным Tov без душно, без MD и желательно 12pt чтобы это читать было невозможно.
Lmsys притворяются что арена не насытилась и avg человека видит разницу между о4/о3мини и 4o mini
Вдруг решили что учится под человечность это ужасная идея, и вообще пусть ллм пишут с машинным Tov без душно, без MD и желательно 12pt чтобы это читать было невозможно.
Lmsys притворяются что арена не насытилась и avg человека видит разницу между о4/о3мини и 4o mini


21.04.202514:23
🎤 Data Fest 2025 в Белграде — Call 4 Speakers на 25 мая!
🔥 С 24 мая по 1 июня пройдёт Data Fest 2025 — главное событие года для OpenDataScience сообщества
Традиционно Data Fest проходит в разных городах и 25 мая Яндекс откроет для нас двери своего офиса в Белграде!
Приглашаем спикеров со всех Балкан
Хотите рассказать о своём опыте в NLP, CV, Speech, MLOps, LLM, Open-Source, карьере или тимлидстве? Выбирайте свой трек и подавайтесь — даже если вы выступаете впервые 🦜
📍 Где: Белград
📅 Когда: 25 мая
⏳ Дедлайн подачи: 7 мая
💬 Язык выступления: русский (или другой по согласованию с огранизаторами вашего трека)
🔗 Стать спикером <–– тык
☺️ Пересылайте этот пост друзьям и до встречи на Data Fest!
По любым вопросам можно писать представителю ODS в Белграде — @salavat_mj
🔥 С 24 мая по 1 июня пройдёт Data Fest 2025 — главное событие года для OpenDataScience сообщества
Традиционно Data Fest проходит в разных городах и 25 мая Яндекс откроет для нас двери своего офиса в Белграде!
Приглашаем спикеров со всех Балкан
Хотите рассказать о своём опыте в NLP, CV, Speech, MLOps, LLM, Open-Source, карьере или тимлидстве? Выбирайте свой трек и подавайтесь — даже если вы выступаете впервые 🦜
📍 Где: Белград
📅 Когда: 25 мая
⏳ Дедлайн подачи: 7 мая
💬 Язык выступления: русский (или другой по согласованию с огранизаторами вашего трека)
🔗 Стать спикером <–– тык
☺️ Пересылайте этот пост друзьям и до встречи на Data Fest!
По любым вопросам можно писать представителю ODS в Белграде — @salavat_mj


19.04.202508:50
Superhuman vending bot
Агенту дают 500usd, автомат на три лотка, чаржат по 2usd в день за использование автомата, а еще 3 тулa:
- посмотреть информацию о субагенте
- выдать задачу субагенту
- спросить что то субагента
Субагенты в свою очередь могут собрать деньги из автомата, положить новые товары, установить цены и тд.
В чем цель? Наторговать на максимальный обьем денег.
Крайне любопытная работа и бенчмарк, ознакомьтесь
paper
Агенту дают 500usd, автомат на три лотка, чаржат по 2usd в день за использование автомата, а еще 3 тулa:
- посмотреть информацию о субагенте
- выдать задачу субагенту
- спросить что то субагента
Субагенты в свою очередь могут собрать деньги из автомата, положить новые товары, установить цены и тд.
В чем цель? Наторговать на максимальный обьем денег.
Крайне любопытная работа и бенчмарк, ознакомьтесь
paper
16.04.202514:06
Офигеть, JB сделали кодоагента!
Блог
Блог
Repost qilingan:
Speech Info



15.04.202512:32
Mamba-модели в задачах Speech Enhancement
Заключительный пост трилогии о Mamba. Впервые эту архитектуру упомянули в контексте задач Speech Enhancement в статье «An Investigation of Incorporating Mamba for Speech Enhancement».
В этой работе модель устроена довольно просто: waveform domain → Short-Time Fourier Transform (STFT) для перехода Time-Frequency domain → Encoder → TF-Mamba → Decoder → Inverse STFT → waveform domain. Авторы сравнивают Mamba с трансформерами и показывают, что достигают того же качества, но с меньшим числом FLOPs-операций и количеством параметров.
Использование Mamba-блоков продолжили развивать в другой статье: «Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement», где их добавляют в U-Net на этапе обработки скрытых представлений для улавливания как локальных, так и глобальных зависимостей. Каждый Mamba-блок — двунаправленный, что позволяет использовать информацию о будущем и прошлом. Архитектура модели стандартная для U-Net: состоит из нескольких downsample- и затем upsample-блоков со skip-connection между ними, как показано на картинке.
Рассмотрим Mamba-блоки (TS-Mamba) подробнее. Как сказано ранее, они двунаправленные: входное представление параллельно обрабатывается блоками Forward Mamba и Backward Mamba. Постпроцессинг (RMSNorm) применяется к выходам обоих блоков, затем результаты конкатенируются и прогоняются через линейный слой. Формально каждый Mamba-блок (forwardи backward) такой же, как и в предыдущих работах. Отметим, что авторы используют Mamba-блоки и по времени, и по частотам, чтобы учитывать и временные, и частотные зависимости.
Для экспериментов выбирают четыре варианта модели с разным количеством параметров (зависит от размерности C1 и количества TS-Mamba-блоков N):
— Mamba-SEUNet (XS) — 0.99M параметров;
— Mamba-SEUNet (S) — 1.88M параметров;
— Mamba-SEUNet (M) — 3.78M параметров;
— Mamba-SEUNet (L) — 6.28M параметров.
Их сравнивают c такими SOTA-моделями, как MP-SENet и SEMamba (упомянута в начале поста) на датасете VCTK+DEMAND. Согласно замерам маленькая модель Mamba-SEUNet (XS) показывает сопоставимое качество по метрикам CSIG (4.75), CBAK (3.95) и COVL (4.23), имея вдвое меньше параметров и в разы меньше FLOPs-операций.
Для сравнения Mamba-блоков с conformer- и transformer-блоками авторы используют текущий U-Net, в котором заменяют TS-Mamba на conformer и transformer соответственно. Замеры показывают, что Mamba-SEUNet сравним по качеству с U-Net’ами, у которых conformer или transformer вместо Mamba-блоков. Но Mamba-SEUNet имеет меньше FLOPS-операций, а по количеству параметров меньше или сравнимо с U-Net с conformer и transformer. Код модели выложен в открытый доступ.
Екатерина Кузина ❣ Специально для Speech Info
Заключительный пост трилогии о Mamba. Впервые эту архитектуру упомянули в контексте задач Speech Enhancement в статье «An Investigation of Incorporating Mamba for Speech Enhancement».
В этой работе модель устроена довольно просто: waveform domain → Short-Time Fourier Transform (STFT) для перехода Time-Frequency domain → Encoder → TF-Mamba → Decoder → Inverse STFT → waveform domain. Авторы сравнивают Mamba с трансформерами и показывают, что достигают того же качества, но с меньшим числом FLOPs-операций и количеством параметров.
Использование Mamba-блоков продолжили развивать в другой статье: «Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement», где их добавляют в U-Net на этапе обработки скрытых представлений для улавливания как локальных, так и глобальных зависимостей. Каждый Mamba-блок — двунаправленный, что позволяет использовать информацию о будущем и прошлом. Архитектура модели стандартная для U-Net: состоит из нескольких downsample- и затем upsample-блоков со skip-connection между ними, как показано на картинке.
Рассмотрим Mamba-блоки (TS-Mamba) подробнее. Как сказано ранее, они двунаправленные: входное представление параллельно обрабатывается блоками Forward Mamba и Backward Mamba. Постпроцессинг (RMSNorm) применяется к выходам обоих блоков, затем результаты конкатенируются и прогоняются через линейный слой. Формально каждый Mamba-блок (forwardи backward) такой же, как и в предыдущих работах. Отметим, что авторы используют Mamba-блоки и по времени, и по частотам, чтобы учитывать и временные, и частотные зависимости.
Для экспериментов выбирают четыре варианта модели с разным количеством параметров (зависит от размерности C1 и количества TS-Mamba-блоков N):
— Mamba-SEUNet (XS) — 0.99M параметров;
— Mamba-SEUNet (S) — 1.88M параметров;
— Mamba-SEUNet (M) — 3.78M параметров;
— Mamba-SEUNet (L) — 6.28M параметров.
Их сравнивают c такими SOTA-моделями, как MP-SENet и SEMamba (упомянута в начале поста) на датасете VCTK+DEMAND. Согласно замерам маленькая модель Mamba-SEUNet (XS) показывает сопоставимое качество по метрикам CSIG (4.75), CBAK (3.95) и COVL (4.23), имея вдвое меньше параметров и в разы меньше FLOPs-операций.
Для сравнения Mamba-блоков с conformer- и transformer-блоками авторы используют текущий U-Net, в котором заменяют TS-Mamba на conformer и transformer соответственно. Замеры показывают, что Mamba-SEUNet сравним по качеству с U-Net’ами, у которых conformer или transformer вместо Mamba-блоков. Но Mamba-SEUNet имеет меньше FLOPS-операций, а по количеству параметров меньше или сравнимо с U-Net с conformer и transformer. Код модели выложен в открытый доступ.
Екатерина Кузина ❣ Специально для Speech Info
24.04.202510:33
Все чаты на ближайшие пять дней:
Я на месте у кофепоинта.
А, это ты про safety читал oral?
Да, я)
Я не приду
Я на месте у кофепоинта.
А, это ты про safety читал oral?
Да, я)
Я не приду
Repost qilingan:
Борис опять



22.04.202521:43
LM Arena добавила поправку на сентимент в дополнение к поправке на стиль. Эффективность видна по падению llama 4 experimental которая была специально обучена взламывать мозг аннотаторов маркдауном и позитивом.
Настроение определяют с помощью Gemini Flash 2.0.
Мне понравился пост, потому что они прикольно рассказывают про методологию и инсайты. Например, пользователи предпочитают позитивные ответы, но Very Negative ответы им нравятся больше, чем Negative или Neutral.
За наводку спасибо Игорю.
https://blog.lmarena.ai/blog/2025/sentiment-control/
Настроение определяют с помощью Gemini Flash 2.0.
Мне понравился пост, потому что они прикольно рассказывают про методологию и инсайты. Например, пользователи предпочитают позитивные ответы, но Very Negative ответы им нравятся больше, чем Negative или Neutral.
За наводку спасибо Игорю.
https://blog.lmarena.ai/blog/2025/sentiment-control/
Repost qilingan:
AbstractDL

21.04.202512:29
RL не развивает потенциал рассуждений LLM (by Tsinghua)
RL с верифицируемыми наградами (RLVR) — один из самых популярных подходов для прокачки reasoning-способностей современных LLM, вроде OpenAI-o1 и DeepSeek-R1. Считается, что RLVR позволяет модели самой находить новые паттерны рассуждений, отсутствующие в базовой версии.
Но авторы новой статьи из Tsinghua и SJTU решили это перепроверить и получили крайне неожиданный результат: RLVR НЕ создаёт новые стратегии рассуждений.
Когда мало сэмплов (pass@1), то да, RL версии обгоняют base модели. Но если взять pass@128 или pass@256 (много попыток), то уже наоборот, базовые версии стабильно оказываются ЛУЧШЕ, причём существенно!
Причина: RL не создаёт новые паттерны, а лишь усиливает вероятность уже известных решений из базовой модели. При этом резко падает энтропия, а значит, сужается пространство возможных решений.
Прямо противоположный эффект у дистилляции (например, Distill-R1-Qwen): дистилляция реально добавляет в модель новые стратегии рассуждений.
Авторы проверили гипотезу на огромном наборе задач (математика, программирование, визуальный reasoning), множестве моделей и RL-алгоритмов (PPO, GRPO, ReMax и др.). Везде одно и то же — базовая модель имеет больший потенциал при достаточном количестве попыток.
Похоже, что для реального роста reasoning-способностей нужно придумывать совершенно другие подходы.
Статья, GitHub
RL с верифицируемыми наградами (RLVR) — один из самых популярных подходов для прокачки reasoning-способностей современных LLM, вроде OpenAI-o1 и DeepSeek-R1. Считается, что RLVR позволяет модели самой находить новые паттерны рассуждений, отсутствующие в базовой версии.
Но авторы новой статьи из Tsinghua и SJTU решили это перепроверить и получили крайне неожиданный результат: RLVR НЕ создаёт новые стратегии рассуждений.
Когда мало сэмплов (pass@1), то да, RL версии обгоняют base модели. Но если взять pass@128 или pass@256 (много попыток), то уже наоборот, базовые версии стабильно оказываются ЛУЧШЕ, причём существенно!
Причина: RL не создаёт новые паттерны, а лишь усиливает вероятность уже известных решений из базовой модели. При этом резко падает энтропия, а значит, сужается пространство возможных решений.
Прямо противоположный эффект у дистилляции (например, Distill-R1-Qwen): дистилляция реально добавляет в модель новые стратегии рассуждений.
Авторы проверили гипотезу на огромном наборе задач (математика, программирование, визуальный reasoning), множестве моделей и RL-алгоритмов (PPO, GRPO, ReMax и др.). Везде одно и то же — базовая модель имеет больший потенциал при достаточном количестве попыток.
Похоже, что для реального роста reasoning-способностей нужно придумывать совершенно другие подходы.
Статья, GitHub


18.04.202508:44
а нахуя вам ллм тут?


15.04.202512:13
проклятая картинка планирования хаты от 4о, чем дольше смотришь тем тяжелее
Repost qilingan:
Канал респекта и уважухи

21.04.202517:39
Список тестовых заданий от российских IT-компаний в 202Х году:
1. Собрать кровь чёрного козла к успешному запуску приложения;
2. Вызвать эфирных духов для работы в доставке;
3. Обучить внутреннюю нейросеть на вырезках из Бёме и Экхарта;
4. Написать рабочую программу на енохианском;
5. Организовать культ, используя внутреннюю эйчар-документацию;
6. Задействовать минимум пять сигилов в UX/UI-дизайне;
7. Разгадать истинное имя конкурирующей организации и подчинить её головной офис;
8. Запустить стадию Цитринитас для новой корпоративной айдентики;
9. Отрисовать дизайн будущего маскота — пирамидки с глазом;
10. Провести тимбилдинг в мистическом лесу;
11. Сделать отчёт с метриками и диаграммами на основе ведьминых кругов;
12. Погадать по костям животных на прибыль в следующем квартале;
13. Обучить подземных гномов использованию экселя;
14. Вырастить грибную сеть для коммуникации между отделами;
15. Нарисовать пентаграмму так, чтобы в ней нативно угадывался наш логотип;)
1. Собрать кровь чёрного козла к успешному запуску приложения;
2. Вызвать эфирных духов для работы в доставке;
3. Обучить внутреннюю нейросеть на вырезках из Бёме и Экхарта;
4. Написать рабочую программу на енохианском;
5. Организовать культ, используя внутреннюю эйчар-документацию;
6. Задействовать минимум пять сигилов в UX/UI-дизайне;
7. Разгадать истинное имя конкурирующей организации и подчинить её головной офис;
8. Запустить стадию Цитринитас для новой корпоративной айдентики;
9. Отрисовать дизайн будущего маскота — пирамидки с глазом;
10. Провести тимбилдинг в мистическом лесу;
11. Сделать отчёт с метриками и диаграммами на основе ведьминых кругов;
12. Погадать по костям животных на прибыль в следующем квартале;
13. Обучить подземных гномов использованию экселя;
14. Вырастить грибную сеть для коммуникации между отделами;
15. Нарисовать пентаграмму так, чтобы в ней нативно угадывался наш логотип;)
Repost qilingan:
Kali Novskaya

20.04.202519:57
🌸Неделя Научных агентов🌸
#nlp #про_nlp #nlp_papers
Последние две недели выдались особо интересными для агентов для ИИ и науки.
Как обычно, публикую небольшую подборку.
🌸Ассистент AlphaXiv
Совершенно незаменимая вещь для организации статей, теперь ещё и с Deep Research: любую статью с архива можно добавить в свою подборку, поставит лайк, начать обсуждение, а так же сделать блог пост из статьи. Можно экспортировать все свои статьи и сразу сделать краткую выжимку. Если ещё и комментарии оставлять внятные, можно приблизить Arxiv к Openreview.
🟣https://www.alphaxiv.org/explore
🌸Больше агентов для моделирующих наук
CURIE, a multitask benchmark for scientific reasoning
DeepMind представил CURIE — банчмарк для научных проблем в шести дисциплинах: материаловедении, физике конденсированного состояния, квантовых вычислениях, геопространственном анализе, биоразнообразии и моделировании протеиновых структур. Все задачи требуют экспертных знаний в предметной области, длнного контекста и multi-step reasoning.
Бенчмарк CURIE охватывает 10 задач на основе 429 статей по шести различным научным дисциплинам, и охватывают как экспериментальные, так и теоретические аспекты научных исследований. Оценено много моделей: Mixtral, Command R, LongLlama, все топовые проприетарные модели.
🟣https://arxiv.org/abs/2503.13517
🟣https://research.google/blog/evaluating-progress-of-llms-on-scientific-problem-solving/
🌸Законы масштабирования агентов для науки
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Достаточно неплохой обзор степеней автономности агентов для науки, с онтологией способностей, оценкой текущего состояния и следующих степеней автономности. Экспериментов по масштабированию, правда, никаких не ставится, просто рисуют красивые картинкис экспонентами.
🟣https://arxiv.org/abs/2503.22444
🌸Меморизация и научная новизна
All That Glitters is Not Novel: Plagiarism in AI Generated Research
Могут ли агенты генерировать новые идеи? В целом что-то могут, но за ними трудно проверять.
Статья анализирует недетектируемый плагиат в идеях Sakana AI и некоторых других, и оказывается, что 24% новых идей полностью сплагиачены без указания источника (и при этом плагиат не детектируется стандартными методами, так как все перефразировано), 36.0% работ содержали факты, которые никакой научной литературой не подтверждаются.
Странно, что не больше.
🟣https://arxiv.org/abs/2502.16487
Предыдущие части:
🟣LLM хакают научную новизну
🟣AI Scientist от Sakana AI
🟣MLGym — фреймворк для ML агентов
#nlp #про_nlp #nlp_papers
Последние две недели выдались особо интересными для агентов для ИИ и науки.
Как обычно, публикую небольшую подборку.
🌸Ассистент AlphaXiv
Совершенно незаменимая вещь для организации статей, теперь ещё и с Deep Research: любую статью с архива можно добавить в свою подборку, поставит лайк, начать обсуждение, а так же сделать блог пост из статьи. Можно экспортировать все свои статьи и сразу сделать краткую выжимку. Если ещё и комментарии оставлять внятные, можно приблизить Arxiv к Openreview.
🟣https://www.alphaxiv.org/explore
🌸Больше агентов для моделирующих наук
CURIE, a multitask benchmark for scientific reasoning
DeepMind представил CURIE — банчмарк для научных проблем в шести дисциплинах: материаловедении, физике конденсированного состояния, квантовых вычислениях, геопространственном анализе, биоразнообразии и моделировании протеиновых структур. Все задачи требуют экспертных знаний в предметной области, длнного контекста и multi-step reasoning.
Бенчмарк CURIE охватывает 10 задач на основе 429 статей по шести различным научным дисциплинам, и охватывают как экспериментальные, так и теоретические аспекты научных исследований. Оценено много моделей: Mixtral, Command R, LongLlama, все топовые проприетарные модели.
🟣https://arxiv.org/abs/2503.13517
🟣https://research.google/blog/evaluating-progress-of-llms-on-scientific-problem-solving/
🌸Законы масштабирования агентов для науки
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Достаточно неплохой обзор степеней автономности агентов для науки, с онтологией способностей, оценкой текущего состояния и следующих степеней автономности. Экспериментов по масштабированию, правда, никаких не ставится, просто рисуют красивые картинки
🟣https://arxiv.org/abs/2503.22444
🌸Меморизация и научная новизна
All That Glitters is Not Novel: Plagiarism in AI Generated Research
Могут ли агенты генерировать новые идеи? В целом что-то могут, но за ними трудно проверять.
Статья анализирует недетектируемый плагиат в идеях Sakana AI и некоторых других, и оказывается, что 24% новых идей полностью сплагиачены без указания источника (и при этом плагиат не детектируется стандартными методами, так как все перефразировано), 36.0% работ содержали факты, которые никакой научной литературой не подтверждаются.
Странно, что не больше.
🟣https://arxiv.org/abs/2502.16487
Предыдущие части:
🟣LLM хакают научную новизну
🟣AI Scientist от Sakana AI
🟣MLGym — фреймворк для ML агентов


17.04.202514:27
15.04.202520:31
Сходки на iclr не будет


22.04.202521:50
It's so over, gemeni2.5 flash это гигачат
21.04.202514:32
как говорится - никогда не спрашивайте мужчину про зарплату, а тимлида почему он ведет пары в скиллбоксе


20.04.202507:40
Знали бы вы что он потом делал с этим агнцем


16.04.202517:38
О4мини хуже чем о3мини, скелетрон вернётся с другими смешными новостями когда выйдут
15.04.202516:18
Яндекс запустил бета-версию ризонинга (рассуждений) в чате с Алисой. Это следующий шаг после Chain-of-Thought в прошлом семействе моделей YandexGPT 4 – теперь ризонинг реализован как полноценный пайплайн.
Наполнение
Данные для обучения частично генерируются через YandexGPT 5 Pro, а этап SFT оптимизируют — используются только такие запросы, по которым можно дать только однозначный ответ. Эксперементируют также с онлайн-ризонингом через GRPO, чтобы модель обучалась прямо во время взаимодействия с данными, а также с оффлайн-RL-ризонингом, проводя сравнение и дообучение на лучших генерациях.
Обучение
В обучающий датасет вошли не только математические задачи, но и практические b2b-кейсы: классификация, суммаризация, извлечение информации. Для ускорения процесса задействовали собственный open-source – библиотеку YaFSDP.
Все еще философия открытости
Есть выбор между YandexGPT 5 и опенсорсной моделью — микс “своих” и опенсорс решений. Для нашей ИИ-индустрии такой подход скорее в новинку, но это неплохое решение. Похожую стратегию применяет Microsoft, используя технологии OpenAI параллельно с развитием собственного ресерча. Конкуренция есть конкуренция, но в современной ИИ-гонке изоляция и опора только на собственные разработки - прямой путь к отставанию. Гибридный подход позволяет использовать лучшее от разных экосистем, а еще собрать более качественный датасет и понять поток запросов на рассуждения.
Reasoning-нейросетки — более нишевое решение, чем обычные LLM — они нужны, в основном, на более сложные задачи, где нужно многоступенчатое рассуждение. Но посмотреть, актуальны ли они для наших пользователей – определенно стоит. Так что ждем финальный релиз.
Ознакомиться подробнее с тестами тут
Наполнение
Данные для обучения частично генерируются через YandexGPT 5 Pro, а этап SFT оптимизируют — используются только такие запросы, по которым можно дать только однозначный ответ. Эксперементируют также с онлайн-ризонингом через GRPO, чтобы модель обучалась прямо во время взаимодействия с данными, а также с оффлайн-RL-ризонингом, проводя сравнение и дообучение на лучших генерациях.
Обучение
В обучающий датасет вошли не только математические задачи, но и практические b2b-кейсы: классификация, суммаризация, извлечение информации. Для ускорения процесса задействовали собственный open-source – библиотеку YaFSDP.
Все еще философия открытости
Есть выбор между YandexGPT 5 и опенсорсной моделью — микс “своих” и опенсорс решений. Для нашей ИИ-индустрии такой подход скорее в новинку, но это неплохое решение. Похожую стратегию применяет Microsoft, используя технологии OpenAI параллельно с развитием собственного ресерча. Конкуренция есть конкуренция, но в современной ИИ-гонке изоляция и опора только на собственные разработки - прямой путь к отставанию. Гибридный подход позволяет использовать лучшее от разных экосистем, а еще собрать более качественный датасет и понять поток запросов на рассуждения.
Reasoning-нейросетки — более нишевое решение, чем обычные LLM — они нужны, в основном, на более сложные задачи, где нужно многоступенчатое рассуждение. Но посмотреть, актуальны ли они для наших пользователей – определенно стоит. Так что ждем финальный релиз.
Ознакомиться подробнее с тестами тут
Repost qilingan:
BRAIn Lab: Optimization and Beyond



14.04.202511:59
Семинар: Методы оптимизации круглых тензоров
🗓 Когда: Четверг, 17 апреля, 18:35
🎙 Докладчик: Андрей Веприков — студент 5 курса ФПМИ, сотрудник лаборатории BRAIn
О чём пойдёт речь?
При обучении современных нейронных сетей все чаще параметры (nn.Module ю ноу) имеют вид матриц (двумерных тензоров), однако классические методы оптимизации никак не учитывают эту структуру, так как любимые AdamW и SGD (sign SGD) работают в режиме element-wise.
На семинаре обсудим два ключевых сюжета:
🔵Steepest Descent для матриц — все знают, что если использовать вторую норму в наискорейшем спуске для векторных параметров, то мы получаем SGD. Если же использовать бесконечную норму, то получается sign SGD. И что, на этом всё? Ничего подобного! При переходе в двумерный аниме мир матриц у нас появляется тонна различных норм, которые позволяют строить на первый взгляд совершенно разные, но на самом деле удивительно похожие алгоритмы оптимизации.
🔵 Квази-Ньютоновские методы в матричной форме — в матричном аниме мире не так очевидно, как должны выглядеть квази-ньютоновские методы, ведь параметры уже имеют размеренность матриц. Чем же нам приближать Гессиан? Ответ прост двумя матрицами! На семинаре мы обсудим, какая интуиция и математика стоят за этим подходом, и как же с этим всем связаны нормы из первого раздела.
Также обсудим:
🔸Как алгоритм Ньютона-Шульца помогает GPT-4o выдавать вам лучший рецепт жареных пельменей с сыром, зеленью и сметаной?
🔸Как эффективно приближать Гессиан функции ошибки при обучении современных нейронных сетей?
🔸Передовые (NDA) результаты, полученные вашим покорным слугой, которые объединяют эти два сюжета в единое целое
Ссылка для подключения: https://us06web.zoom.us/j/85248717255?pwd=Py0aex6j95MmuKVCHocp5INpv6qwkn.1
Приходите, будет интересно!
P. S. Если не сможете присутствовать — запись семинара появится на нашем Rutube-канале через неделю. А пока можно посмотреть предыдущие выпуски!
🗓 Когда: Четверг, 17 апреля, 18:35
🎙 Докладчик: Андрей Веприков — студент 5 курса ФПМИ, сотрудник лаборатории BRAIn
О чём пойдёт речь?
При обучении современных нейронных сетей все чаще параметры (nn.Module ю ноу) имеют вид матриц (двумерных тензоров), однако классические методы оптимизации никак не учитывают эту структуру, так как любимые AdamW и SGD (sign SGD) работают в режиме element-wise.
На семинаре обсудим два ключевых сюжета:
🔵Steepest Descent для матриц — все знают, что если использовать вторую норму в наискорейшем спуске для векторных параметров, то мы получаем SGD. Если же использовать бесконечную норму, то получается sign SGD. И что, на этом всё? Ничего подобного! При переходе в двумерный аниме мир матриц у нас появляется тонна различных норм, которые позволяют строить на первый взгляд совершенно разные, но на самом деле удивительно похожие алгоритмы оптимизации.
🔵 Квази-Ньютоновские методы в матричной форме — в матричном аниме мире не так очевидно, как должны выглядеть квази-ньютоновские методы, ведь параметры уже имеют размеренность матриц. Чем же нам приближать Гессиан? Ответ прост двумя матрицами! На семинаре мы обсудим, какая интуиция и математика стоят за этим подходом, и как же с этим всем связаны нормы из первого раздела.
Также обсудим:
🔸Как алгоритм Ньютона-Шульца помогает GPT-4o выдавать вам лучший рецепт жареных пельменей с сыром, зеленью и сметаной?
🔸Как эффективно приближать Гессиан функции ошибки при обучении современных нейронных сетей?
🔸Передовые (NDA) результаты, полученные вашим покорным слугой, которые объединяют эти два сюжета в единое целое
Ссылка для подключения: https://us06web.zoom.us/j/85248717255?pwd=Py0aex6j95MmuKVCHocp5INpv6qwkn.1
Приходите, будет интересно!
P. S. Если не сможете присутствовать — запись семинара появится на нашем Rutube-канале через неделю. А пока можно посмотреть предыдущие выпуски!
Ko'rsatilgan 1 - 24 dan 309
Ko'proq funksiyalarni ochish uchun tizimga kiring.