Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Rhumbfleet avatar

Rhumbfleet

Rhumbfleet это канал по обмену знаниями, практическим опытом и информационными ресурсами между моряками торгового флота. Публикации взяты из открытого доступа и могут быть удалены по требованию правообладателя.
TGlist рейтинг
0
0
ТипАчык
Текшерүү
Текшерилбеген
Ишенимдүүлүк
Ишенимсиз
Орду
ТилиБашка
Канал түзүлгөн датаJun 04, 2024
TGlistке кошулган дата
Jul 03, 2024
Тиркелген топ

"Rhumbfleet" тобундагы акыркы жазуулар

👋 Приглашаю в личный блог, где я рассказываю о вариантах и возможностях перехода на береговую должность и не только
📱 https://www.instagram.com/afterseafarer

📱 Канал с береговыми вакансиями для моряков
https://t.me/maritimeshorebasedjob

🔝Прямой эфир с ответами на ваши вопросы на завтра в 15-00
Pre-bunkering: Before starting the bunkering operation, the ship and the bunker supplier or barge should conduct a pre-bunkering meeting to discuss and agree on the bunkering plan, including the sequence of tanks to be filled, transfer rate, sampling method and stop signals. The ship and the bunker supplier or barge should also complete a pre-bunkering checklist to verify that all safety measures are in place.

Bunkering: During bunkering operation, both parties should monitor the transfer process closely and follow all safety precautions. The ship should check the quantity and quality of fuel oil or lube oil received by using flow meters, gauges, sounding tapes and samples. The ship should also maintain proper communication with the bunker supplier or barge throughout bunkering operation.

Post-bunkering: After completing bunkering operation, both parties should stop pumping safely and disconnect hoses carefully. The ship should record the final quantity and quality of fuel oil or lube oil received by using ullage reports, bunker delivery notes (BDN) and certificates of quality (COQ). The ship should also inspect all equipment, tanks and pipelines for any leaks or damages.

REGULATIONS

Bunkering operation is subject to various international regulations that aim to ensure safety, security and environmental protection. Some of the main regulations are:

The International Convention for the Prevention of Pollution from Ships (MARPOL), which sets limits on the sulphur content and emissions of bunker fuels, and requires ships to keep records of their fuel consumption and transfers.

The International Convention for the Safety of Life at Sea (SOLAS), which establishes standards for fire prevention and firefighting equipment, emergency procedures and communication systems during bunkering operation.

The International Ship and Port Facility Security (ISPS) Code, which requires ships and port facilities to implement security measures to prevent unlawful acts that may endanger bunkering operation.

The International Maritime Organization (IMO) Guidelines on Bunkering Operation, which provide best practices and recommendations for safe and efficient bunkering operation.

Ships and bunker suppliers must comply with these regulations and any other applicable national or local laws when conducting bunkering operation. Failure to do so may result in fines, penalties or legal actions.

Rhumbfleet | #bunkering
Bunkering is the process of refueling a ship with the necessary fuels for its voyage. This operation can be done from a barge or a terminal to a ship’s tanks. This is regularly done to ensure that the vessel has enough fuel to complete its journey safely and efficiently. However, bunkering also comes with a range of challenges, such as safety risks, environmental concerns, and regulatory compliance.
 
TYPES OF FUELS

Marine Gas Oil (MGO): This is a type of diesel fuel that meets the International Maritime Organization’s (IMO) low sulfur content requirement of 0.1%. MGO is used by ships in emission control areas (ECAs), such as the Baltic Sea and the North Sea, where stricter environmental regulations apply.

Marine Diesel Oil (MDO): This is a blend of heavy gas oil and marine gas oil. MDO has a higher sulfur content than MGO, ranging from 0.5% to 1.5%. MDO is used by ships outside of ECAs that have engines that can handle the lower quality fuel.

Intermediate Fuel Oil (IFO): This is a residual fuel that is derived from crude oil after the lighter fractions have been removed. IFO has a high viscosity and density and requires heating before use. IFO has a sulfur content of up to 3.5%. IFO is used by ships that have boilers or steam turbines for propulsion or power generation.

Heavy Fuel Oil (HFO): A type of IFO with the highest viscosity and density. HFO is the cheapest and most widely used marine fuel, but also the most polluting and harmful to human health and the environment. HFO is used by large cargo ships and cruise liners that have special equipment to handle the fuel.

Low Sulfur Fuel Oil (LSFO): A type of IFO with a reduced sulfur content of 0.5% or less. LSFO was introduced in 2020 as part of the IMO’s global sulfur cap regulation that aims to reduce air pollution from shipping. LSFO is used by ships that do not have exhaust gas cleaning systems (scrubbers) or alternative fuels.

Liquefied Natural Gas (LNG): A natural gas that has been cooled to -162°C and converted into liquid form for easier storage and transport. LNG has a very low sulfur content and emits less carbon dioxide and nitrogen oxides than other marine fuels. LNG is used by ships that have dual-fuel engines or dedicated gas engines that can burn LNG directly.
 
The choice of bunker fuel depends on various factors such as engine type, environmental regulations, availability, price, etc. The bunker fuel should meet the specifications given by ISO standards such as ISO 8217:2017, which defines the requirements for fuels for use in marine diesel engines and boilers.

STORAGE TANKS

The fuels used for bunkering on ships are stored in dedicated storage tanks onboard the vessel. These tanks must be properly maintained to ensure their safety and integrity. These tanks are separate from the cargo tanks and the ballast tanks, and they have specific requirements for safety and environmental protection. Designated tanks must be properly maintained and inspected to avoid leaks, spills, or explosions. They are equipped with adequate ventilation, gauges, valves, and pumps to control the flow of fuel during bunkering operations. 
 
BUNKERING PROCEDURES
Bunkering procedures can vary depending on the type of fuel being used and the specific vessel being fueled. However, there are some general best practices that should be followed. 
Here are some of the important safety procedures that should be followed during bunkering:

Ordering: The chief engineer should calculate the volume and grade of fuel oil or lube oil needed for the ship, and order it from a reliable supplier. The order should specify the delivery date, time, place and mode of bunkering, as well as any special requirements such as heating or filtering.

Preparation: The ship should prepare for bunkering by ensuring that all equipment, tanks and pipelines are ready and in good condition. The ship should also communicate with the bunker supplier or barge to confirm the details of bunkering and exchange relevant information such as contact numbers, signals and emergency procedures.
The Global Maritime Distress and Safety System (GMDSS) is a crucial communication system used in maritime operations to ensure the safety of ships and their crews. Testing GMDSS equipment is essential to ensure it functions correctly in case of an emergency. Below is a general guide on how to test GMDSS equipment:


1. Understand the GMDSS Equipment GMDSS equipment includes:

- VHF Radio: For short-range communication.
- MF/HF Radio: For medium and long-range communication.
- Satellite Communication (Inmarsat-C): For global coverage.
- EPIRB (Emergency Position Indicating Radio Beacon): For distress alerts.
- SART (Search and Rescue Transponder): For locating vessels in distress.
- NAVTEX: For receiving maritime safety information.
- DSC (Digital Selective Calling): For sending and receiving distress alerts.

2. Follow Legal and Regulatory Requirements
- Testing must comply with international regulations (e.g., SOLAS Chapter IV).
- Avoid transmitting actual distress signals during testing. Use test modes or designated test frequencies.
- Notify relevant authorities if required (e.g., coast radio stations).

3. Testing Procedures VHF Radio

1. DSC Test:
- Switch to DSC mode.
- Send a test call to a coast station or another vessel (if permitted).
- Ensure you receive an acknowledgment.

2. Voice Test:
- Tune to a working channel (e.g., Channel 16 for emergencies).
- Conduct a radio check with a coast station or nearby vessel.

MF/HF Radio

1. DSC Test:
- Send a DSC test call to a coast station.
- Ensure you receive an acknowledgment.

2. Voice Test:
- Conduct a voice test on an appropriate frequency.

Inmarsat-C

1. Test Message:
- Send a test message to a shore-based station or another vessel.
- Verify receipt of the message.

EPIRB

1. Self-Test:
- Most EPIRBs have a self-test function. Follow the manufacturer’s instructions.

2. Activation Test:
- Only activate the EPIRB in a test mode (if available) or during scheduled testing periods.
- Notify the relevant Rescue Coordination Centre (RCC) before testing.

SART

1. Test Mode:
- Activate the SART in test mode.
- Use a radar to detect the SART signal.
- Ensure the radar displays the correct response.

NAVTEX

1. Reception Test:
- Check that the NAVTEX receiver is operational and receiving messages.
- Verify the printout or display of received messages.

4. Record the Test Results
- Document all tests, including the date, time, equipment tested, and results.
- Report any faults or issues to the appropriate personnel for repair.

5. Regular Maintenance
- Perform routine checks and maintenance as per the manufacturer’s guidelines.
- Ensure batteries are charged and replaced as needed.

6. Training
- Ensure crew members are trained in operating and testing GMDSS equipment.
- Conduct regular drills to simulate emergency scenarios.

Important Notes:

- Never transmit a real distress signal unless there is an actual emergency.
- Always follow the manufacturer’s instructions for testing and maintenance.
- Be aware of local regulations and restrictions regarding GMDSS testing.

By following these steps, you can ensure that your GMDSS equipment is functioning correctly and ready for use in an emergency.

Rhumbfleet | #gmdss
BWTS (Ballast Water Treatment System) by Techcross is a system designed to treat ballast water in ships to prevent the spread of invasive aquatic species. Here's a brief explanation of how it works:

1. Electrolysis: The system uses electrolysis to generate sodium hypochlorite (a disinfectant) from seawater. When seawater passes through an electrolytic cell, an electric current is applied, which splits the salt (NaCl) in the water into sodium hypochlorite (NaOCl), a powerful biocide.

2. Injection: The generated sodium hypochlorite is then injected back into the ballast water. This chemical effectively kills or neutralizes organisms and pathogens present in the ballast water.

3. Neutralization: Before the ballast water is discharged, the system neutralizes the residual oxidants to ensure that the discharged water is environmentally safe. This is typically done by adding a neutralizing agent like sodium bisulfite.

4. Monitoring and Control: The system includes sensors and control units to monitor the treatment process, ensuring that the ballast water meets the required international standards (such as IMO D-2 standards) before it is discharged.

Techcross's BWTS is known for its efficiency, reliability, and compliance with international regulations, making it a popular choice for many shipping companies.

Rhumbfleet | #bwts
The exhaust gas temperature (EGT) after the turbocharger is typically lower than before the turbocharger, and this is a normal and expected phenomenon. Here's why:

1. Energy Extraction by the Turbocharger Turbine:
- The turbocharger consists of two main components: the compressor (which compresses intake air) and the turbine (which is driven by exhaust gases).
- As the hot exhaust gases pass through the turbine, they expand and lose energy. This energy is used to spin the turbine, which in turn drives the compressor.
- The process of energy extraction from the exhaust gases causes a drop in temperature as the gases lose heat energy to the turbine.

2. Pressure Drop Across the Turbine:

- The exhaust gases enter the turbine at high pressure and exit at a lower pressure. This pressure drop results in a temperature reduction due to the expansion of the gases (following the principles of thermodynamics, such as the ideal gas law).

3. Heat Dissipation:

- Some heat is also lost to the turbocharger housing and surrounding components as the exhaust gases pass through the turbine. This contributes to the overall temperature drop.

Typical Temperature Drop:

- The temperature drop across the turbocharger turbine can range from 100°C to 200°C (212°F to 392°F), depending on the efficiency of the turbocharger, the load on the engine, and the operating conditions.

Why This Matters:

- The temperature reduction after the turbocharger is beneficial because it reduces the thermal stress on downstream components, such as the exhaust system and catalytic converter.
- However, the temperature before the turbocharger (turbine inlet) is critical to monitor, as excessively high EGTs can damage the turbocharger or indicate engine issues (e.g., over-fueling, incorrect timing, or excessive load).

Summary:

The exhaust gas temperature after the turbocharger is lower than before because the turbocharger extracts energy from the exhaust gases to drive the compressor, resulting in a pressure drop and heat loss. This is a normal and expected part of the turbocharging process.

Rhumbfleet | #turbocharger
Застывание тяжелого топлива (мазута) в форсунках главного двигателя судна — это распространенная проблема, особенно в условиях низких температур, характерных для портов Северной Европы. Тяжелое топливо при охлаждении становится более вязким и может застыть, что приводит к блокировке топливной системы и невозможности запуска двигателя. Вот основные шаги для решения этой проблемы:

1. Прогрев топливной системы

- Используйте систему подогрева топлива, если она предусмотрена на судне. Убедитесь, что подогреватели работают корректно и обеспечивают достаточную температуру для разжижения топлива.

- Проверьте температуру топлива в танках и топливных магистралях. Для тяжелого топлива (HFO) температура должна поддерживаться в диапазоне 120–150 °C (в зависимости от типа топлива).

2. Использование легкого топлива (солярки)

- Если на судне предусмотрена возможность переключения на легкое топливо (MDO или MGO), переключите систему на него. Легкое топливо имеет более низкую температуру застывания и может быть использовано для запуска двигателя.

- После запуска двигателя и прогрева системы можно попробовать снова перейти на тяжелое топливо.

3. Продувка форсунок

- Если форсунки забиты застывшим топливом, их необходимо продуть или демонтировать для очистки. Используйте сжатый воздух или специальные растворители для удаления остатков топлива.

- Убедитесь, что топливные фильтры не забиты, и при необходимости замените их.

4. Контроль температуры в топливных танках

- Проверьте, поддерживается ли необходимая температура в топливных танках. Если температура слишком низкая, увеличьте нагрев с помощью паровых или электрических подогревателей.

- Убедитесь, что изоляция топливных магистралей не повреждена.

5. Использование добавок

- В некоторых случаях можно использовать специальные присадки, которые снижают температуру застывания топлива и улучшают его текучесть. Однако это временное решение, и основное внимание следует уделить поддержанию правильной температуры.

6. Профилактика в будущем

- Перед заходом в порты с холодным климатом перейдите на легкое топливо или убедитесь, что система подогрева тяжелого топлива работает исправно.

- Регулярно проверяйте состояние топливной системы, включая форсунки, фильтры и подогреватели.

- Убедитесь, что экипаж обучен действиям в подобных ситуациях.

Если проблема не решается собственными силами, может потребоваться помощь портовых служб или специалистов по ремонту судовых двигателей.
https://youtu.be/PjQL2IQejio
How to protect your hearing on board

Hearing loss is a common issue faced by seafarers, particularly those working in the engine room.

High levels of ambient noise, typically exceeding 85 dBA, can cause noise-induced hearing loss (NIHL). The negative effects of such noise levels, or higher, depend on individual physiology and the duration of exposure.

Did you know?

-Res. A.468(XII) has set specific thresholds for noise levels on board

-The ILO/MLC provides guidance on occupational hearing problems and how ships can comply with the required noise levels.

-The goal of hearing protection is to lower the noise levels experienced to 80 dB or below.

-Over-protection, reducing noise to 65–70 dB or lower, can be dangerous as it impairs the ability to hear communications and alarms.

-All hearing protection equipment must comply with approved standards. In Europe, the most commonly adopted standard is EN 352

Rhumbfleet | #safety #hearing #protection
Do you know which cargoes and materials on board are oxygen-depleting?

The materials listed below are known to be capable of causing oxygen depletion. However, the list is not exhaustive. Oxygen depletion may also be caused by other materials of vegetable or animal origin, by flammable or spontaneously combustible materials and by materials with a high metal content, including, but not limited to:

- grain, grain products and residues from grain processing (such as bran, crushed grain, crushed malt or meal), hops, malt husks and spent malt;
- oilseeds as well as products and residues from oilseeds (such as seed expellers, seed cake, oil cake and meal);
- copra;
- wood in such forms as packaged timber, round wood, logs, pulpwood, props (pit props and other propwood), woodchips, woodshavings, wood pellets and sawdust;
- jute, hemp, flax, sisal, kapok, cotton and other vegetable fibers (such as esparto grass/Spanish grass, hay, straw, bhusa), empty bags, cotton waste, animal fibers, animal and vegetable fabric, wool waste and rags;
- fish, fishmeal and fish scrap;
- guano;
- sulphidic ores and ore concentrates;
- charcoal, coal, lignite and coal products;
- direct reduced iron (DRI);
- dry ice;
- metal wastes and chips, iron swarf, steel and other turnings, borings, drillings, shavings, filings and cuttings;
- scrap metal.

To mitigate risks, enclosed spaces and cargo holds must be ventilated, and oxygen levels should be monitored regularly using oxygen meters before entry. Proper ventilation and protective equipment are crucial to prevent asphyxiation hazards in such environments.

Rhumbfleet | #safety #hazards

Рекорддор

11.02.202523:59
643Катталгандар
27.07.202423:59
900Цитация индекси
30.03.202518:46
1.3K1 посттун көрүүлөрү
28.02.202518:46
1.3K1 жарнама посттун көрүүлөрү
13.09.202423:59
6.31%ER
01.04.202520:49
200.64%ERR
Катталуучулар
Citation индекси
Бир посттун көрүүсү
Жарнамалык посттун көрүүсү
ER
ERR
OCT '24JAN '25APR '25

Rhumbfleet популярдуу жазуулары

29.03.202510:27
👋 Приглашаю в личный блог, где я рассказываю о вариантах и возможностях перехода на береговую должность и не только
📱 https://www.instagram.com/afterseafarer

📱 Канал с береговыми вакансиями для моряков
https://t.me/maritimeshorebasedjob

🔝Прямой эфир с ответами на ваши вопросы на завтра в 15-00
Көбүрөөк функцияларды ачуу үчүн кириңиз.