Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Лёха в Short’ах Long’ует
Лёха в Short’ах Long’ует
Институт физики атмосферы им. А.М. Обухова РАН (ИФА) avatar
Институт физики атмосферы им. А.М. Обухова РАН (ИФА)
Институт физики атмосферы им. А.М. Обухова РАН (ИФА) avatar
Институт физики атмосферы им. А.М. Обухова РАН (ИФА)
Дорогие коллеги, поздравляем вас с Днем российской науки! ⚛️

🌐 Этот день — отличный повод отметить наши достижения и вклад в изучение атмосферы и климата. Наши совместные усилия в эксперементальных и теоретических исследованиях помогают глубже понять сложные взаимодействия в климатической системе и находить решения для актуальных экологических проблем.

🗺 Желаем вам здоровья, творческих успехов и новых научных открытий!
23.01.202512:26
13.01.202507:39
#ФАО

📰 Доступен очередной номер журнала Физика атмосферы и океана (русская версия)- том 60 Nº3 (2024 г.).

В номере:
👍Неустойчивость твердотельного вращения хетонного типа (Калашник М.В.)
👍Дисперсионное соотношение для ветровых волн с учетом дрейфового течения (Плаксина Ю.Ю., Пуштаев А.В., Родыгин В.И., Винниченко Н.А., Уваров А.В.)
👍Гистерезисный характер отклика глобального углеродного цикла на антропогенные эмиссии СО2 в атмосферу (Елисеев А.В., Гизатуллин Р.Д.)
👍Временные и пространственные вариации уходящего теплового излучения Земли по данным спутникового ИК-зондировщика ИКФС-2 (Тимофеев Ю.М., Неробелов Г.М., Козлов Д.А., Черкашин И.С., Неробелов П.М., Рублев А.Н., Успенский А.Б., Киселева Ю.В.)
👍Изменчивость содержания черного углерода и аэрозолей РМ10 И РМ2.5 в приземном воздухе мегаполиса (Виноградова А.А., Губанова Д.П., Копейкин В.М.)
👍О параметризации диссипативных процессов в моделях турбулентного переноса для описания термогидродинамики и биогеохимии стратифицированных внутренних водоемов (Гладских Д.С., Мортиков Е.В.)
👍Определение течений в водохранилище по последовательным внутрисуточным спутниковым изображениям (Капустин И.А., Мольков А.А., Даниличева О.А., Шомина О.В., Лещев Г.В., Доброхотова Д.В., Ермошкин А.В.)
👍Исследование параметров ветра и волнения на Горьковском водохранилище: натурные измерения и численное моделирование (Кузнецова А.М., Байдаков Г.А., Троицкая Ю.И.)
👍Формирование гидроэкологической структуры Иваньковского водохранилища в летний период в смежные годы c различными погодными условиями (Гречушникова М.Г., Григорьева И.Л., Ломова Д.В., Кременецкая Е.Р., Комиссаров А.Б., Федорова Л.П., Ломов В.А., Чекмарева Е.А.)
👍Мониторинг термической структуры поверхности неоднородных ландшафтов с использованием БПЛА (Варенцов М.И., Варенцов А.И., Репина И.А., Артамонов А.Ю., Дрозд И.Д., Мамонтов А.Е., Степаненко В.М.)
#ифа_лаборатории

💥Пыльные бури являются одним из важных опасных природных явлений, которые влияют на социально–экономическую жизнь и здоровье человека, а также на многие атмосферные процессы и экосистемы. Частицы пыли могут преодолевать по ветру расстояния до нескольких тысяч километров. В этой связи возникает важная задача определения источников такого пылевого аэрозоля.

Сотрудниками Сектора дистанционного исследования состава атмосферы (СДИСА) в ходе выполнения работ по российско-иранскому проекту РФФИ в ИФА РАН была разработана методика решения этой задачи.
🔘Методика основана на совместном анализе данных измерений характеристик аэрозоля над исследуемым регионом, а также информацией об обратных траекториях воздушных масс, прибывших в исследуемый регион из пограничного слоя с удалённых территорий. Эта методика была опробована на примере региона оз. Урмия (Иран). В качестве данных о характеристиках аэрозоля использованы результаты спутникового зондирования (Aqua-Terra MODIS) аэрозольной оптической толщины на длине волны 550 нм (АОТ550) и параметра Ангстрема. Для выбранного региона проведена оценка вклада регионального пограничного слоя в AOТ550 при характерных для пылевых частиц значениях параметра Ангстрема (< 1.0) и построена его сезонная изменчивость по данным за 2009-2022 гг. (Рис. 1). Цветом показана вероятность переноса воздушных масс в исследуемый регион. Регион оз. Урмия отмечен на рисунке тёмно-серым прямоугольником, Аральское море показано в границах 1960-ых гг.

✔️ Результаты показали, что в марте-мае на бассейн оз. Урмии влияние оказывает дальний перенос пыли из атмосферного пограничного слоя (АПС) над Сирийской и Аравийской пустынями. ✔️ В июне, помимо этих источников, пылевая аэрозольная нагрузка также связана с Арало-Каспийским аридным регионом, включая пустыню Аралкум. ✔️В июле-октябре продолжается дальний перенос пыли из атмосферного погранслоя с пустынь Ближнего Востока, а также стран Арало-Каспийского региона. Также, летом часть пылевой нагрузки над Урмийской котловиной обусловлена выбросами из местных источников, включая сухое дно самого озера.


🧾 Подробнее с результатами можно ознакомиться в недавно опубликованной статье Abadi et al.,2024.
06.12.202412:51
🪙COP29

С 11 по 22 ноября в г.Баку состоялась 29-я конференция Организации Объединенных Наций по изменению климата (COP29). Конференция ООН по изменению климата в 2024 г. стала первой климатическая конференция ООН на постсоветском пространстве.

Среди целей, которые обсуждались на COP29 стали:
🪙Согласование по финансовой цели на период после 2025 года. Укрепление связи между климатическим финансированием, инвестициями и торговлей.
🪙Стимулирование мер по смягчению последствий, адаптации и исследований в климатической сфере.
🪙Продвижение зеленой энергетики, инфраструктуры и регионального сотрудничества.
🪙Увеличение емкости хранения энергии и модернизация глобальных энергетических сетей.
🪙Устранение барьеров для развития глобального рынка чистого водорода.
🪙Предложение Азербайджана о перемирии в рамках COP
🪙Сокращение выбросов и продвижение зеленых технологий.
🪙Развитие образования, здоровья и навыков для устойчивости к изменению климата.
🪙Поддержка фермеров через сотрудничество и финансирование устойчивого сельского хозяйства.
🪙Уменьшение выбросов метана в секторе отходов и пищевых систем.
🪙Усиление межсекторального сотрудничества для устойчивого развития городов.
🪙Снижение выбросов и повышение устойчивости в секторе туризма.
🪙Интеграция водных решений в национальную климатическую политику.
🪙Поддержка развивающихся стран в подготовке отчетов и повышении прозрачности.

🎞Одна из самых громких климатических гипотез – потепление Атлантики, которое чревато остановкой Гольфстрима. Правда ли, что Европе угрожает новый ледниковый период? В интервью для программы Вопрос науки в рамках повестки COP29 в гостях – академик Владимир Семенов, директор Института физики атмосферы имени Обухова. Советуем к просмотру! 💳
21.11.202412:38
#ифа_события
Продолжаем включение с конференции⭐

💭 В секции «Состав атмосферы и перенос примесей» прозвучали доклады, посвящённые газовому составу атмосферы, разного рода аэрозолям и дальнему переносу.
🌊 Оценки аэрозольных эмиссий от лесных пожаров рассматривались в докладе Васильевой А. В. с соавторами.
🌊Исследования динамики аэрозоля в Крыму, Прикаспии и Приаралье обсуждалась на докладах на Артамоновой М.С. и Губанова Д.П. с соавторами.
🌊Анализ трендов состава атмосферы и их отклика на климатические изменения на основе орбитальной информации и модельных расчетов представлено в докладе Ракитина В.С.
🌊Динамика отдельных газовых составляющих, в том числе метана углекислого газа и диоксида озота, представлены в докладах Панкратовой Н.В. с соавторами, Гаврилова Г.О. с соавторами и Боровского А.Н..
🌊Вопросы исследования состава атмосферы, проводимые на базах ИФА им. А.М. Обухова РАН в Звенигороде, Москве и Минеральных Водах поднимались в докладах Виноградова А.А., Березиной Е.В. и Матешевой А.В.

〰️ В секции «Геофизическая гидродинамика» был представлен доклад Курганского М.В. «Двухпараметрическая модель интенсивных атмосферных вихрей».

Следите за продолжением конференции 🌟
29.01.202511:59
#ФАО

📰 Доступен очередной номер журнала Физика атмосферы и океана (русская версия) - том 60 Nº4 (2024 г.).

В номере:

👊Распространение без отражения внутренних волн в обменном течении мелкой двухслойной среды в канале переменного сечения (Чурилов С.М.)
👊Влияние внутренних гравитационных волн в атмосферном пограничном слое на измерения характеристик турбулентности пульсационным методом (Зайцева Д.В., Каллистратова М.А., Люлюкин В.С., Кузнецов Р.Д., Кузнецов Д.Д.)
👊Диагностика шквалов при прохождении через высотную метеорологическую мачту в г. Обнинск в 2014–2023 гг.
(Вазаева Н.В., Кулижникова Л.К., Мацкевич М.К.)
👊Вертикальная структура течений в западной части моря Уэдделла (Мухаметьянов Р.З.)
👊Моделирование антропогенного потока тепла в течение отопительного периода в крупных городах России (Фролькис В.А., Евсиков И.А., Гинзбург А.С.)
👊Сопоставление долговременных трендов и межгодовых вариаций содержания NO₂ в атмосфере по данным спутниковых (прибор OMI) и наземных спектрометрических измерений на станциях сети NDACC (Груздев А.Н., Елохов А.С.)
👊Метод оценки наибольшего удельного потока метана с поверхности водохранилищ (Гречушникова М.Г., Репина И.А., Казанцев В.С., Ломов В.А.)
👊Эмиссия метана и гидрологическая структура Зейского водохранилища в теплый период (Терский П.Н., Горин С.Л., Репина И.А., Агафонова С.А., Зимин М.В., Шестеркин В.П., Щекотихин Ф.А.)
👊Плотностные эффекты, обусловленные неоднородностью распределения минерализации воды различного генезиса в равнинных водохранилищах (Лепихин А.П., Любимова Т.П., Богомолов А.В., Ляхин Ю.С., Паршакова Я.Н.)
👊Изменчивость содержания и потоков метана в рыбинском водохранилище по результатам натурных наблюдений в разные сезоны года (Ломов В.А., Фролова Н.Л., Ефимов В.А., Репина И.А., Ли Ч., Янг Л.)
23.01.202510:03
11.01.202507:21
2024 год — самый жаркий за всю историю наблюдений с аномалией температуры выше 1,5ºC

Всемирная метеорологическая организация накануне сообщила, что прошедший 2024 год стал самым теплым за всю историю метеорологических наблюдений. Согласно шести международным массивам данных, аномалия глобальной приповерхностной температуры в 2024 году составила 1,55 ± 0,13 относительно доиндустриальных значений, превысив температуру 2023 года (предыдущий рекорд) сразу на 0,1 градус.

💬 Как отметил директор Института физики атмосферы им. А.М. Обухова РАН академик РАН Владимир Семенов:
«Общий тренд на повышение температуры в последние десятилетия связан с деятельностью человека, в первую очередь — с усилением парникового эффекта из-за антропогенных эмиссий углекислого газа. На фоне этого долгопериодного тренда наблюдается изменчивость от года к году, что приводит то к более теплым, то к более прохладным годам относительно средних климатических значений. Такая кратковременная изменчивость связана с различными факторами как внешнего воздействия на климат (например, вулканические извержения), так и внутренней естественной изменчивости атмосферы и океана (например, явление Эль-Ниньо). В частности, в 2023 году существенный вклад могли внести отрицательные аномалии облачности над океаном, а также недавнее явление Эль-Ниньо, разогревшее тропический Тихий океан зимой 2023/2024 гг. и ставшее одной из причин аномально высоких глобальных температур».


Впервые с 2015 года, когда было подписано Парижское соглашение, аномалия глобальной температуры превысила значение в 1,5 градуса — один из порогов потепления, указанный в этом соглашении.

💬 Заместитель директора ИФА РАН Александр Чернокульский:
«Некорректно говорить, что раз аномалия температуры за один год превысила пороговое значение в 1,5 градуса, то мы уже точно пересекли этот порог. Все же в Парижском соглашении заложено устойчивое долгосрочное потепление, аномалия должна быть выше 1,5 градуса в среднем за 10 лет. На данный момент уровень такого потепления составляет 1,3 градуса относительно доиндустриальных значений. Небольшой зазор у нас ещё есть. Впрочем, судя по темпам эмиссий парниковых газов, этот зазор уйдет уже в ближайшие годы».
🌿🙋Как связаны водохранилища с концентрациями парниковых газов? Об этом в сегоднящнем посте.

В Институте физики атмосферы им. А.М. Обухова РАН подвели итоги гидрохимических исследований пяти водохранилищ умеренной и бореальной зон России. Такие комплексные исследования одновременно пяти водохранилищ в России были проведены впервые. Ученые ИФА РАН выполнили их в 2024 году, работая над задачами консорциума «РИТМ углерода» по созданию Российской системы климатического мониторинга. Удалось однозначно установить, что водохранилища являются поглотителями парниковых газов.

Предварительные результаты исследования подтвердили основную гипотезу – перед вскрытием льда в Бурейском водохранилище находится очень большой запас метана – как растворенного в воде, так и содержащегося во льду. Последующие расчеты должны показать то, как именно этот запас соотносится с эмиссией метана в летний период. Но уже сейчас ясно, что величина запаса (а, следовательно, и объем весеннего выброса) достаточно значительна, чтобы это явление стало предметом специальных исследований на исходе зимы 2025 г.

– пояснила Ирина Анатольенва Репина, д.ф.-м.н., профессор РАН, заместитель директора ИФА им. А.М. Обухова РАН, член экспертной группы «Латеральные потоки» консорциума «РИТМ углерода».

🧾Подробнее читайте на странице консорциума «РИТМ углерода».
05.12.202408:59
🏆Поздравляем с победой в конкурсе сотрудников Института физики атмосферы им. А.М. Обухова РАН!

29 ноября 2024 года РНФ объявил победителей конкурса на получение грантов по программе «Проведение фундаментальных научных исследований и поисковых научных исследований малыми отдельными научными группами». Конкурс направлен на поддержку научных исследований и развития научных коллективов, занимающих лидирующие позиции в определенных областях науки.

✨Грант № 25-27-0010 «Вариации газовых составляющих приводного слоя атмосферы в высокоширотных районах Мирового океана по данным судовых и стационарных измерений и их причины» получила сотрудница Лаборатории газовых примесей атмосферы (ЛГПА) Института физики атмосферы им.А.М.Обухова РАН к.ф.-м.н. Панкратова Н.В.

В состав научной группы в том числе вошли сотрудники ЛГПА к.ф.-м.н. Васильева А.В., Белоусов В.А.

👏Поздравляем научный коллектив с победой и желаем дальнейших успехов в научной деятельности!
Искусственный интеллект в современных научных исследованиях.

🥇 В 2024 году Нобелевской премии по физике были удостоены Джон Хопфилд (США) и Джеффри Хинтон (Канада) «за основополагающие открытия и изобретения, которые позволяют осуществлять машинное обучение с использованием искусственных нейронных сетей».

↗ Исследование геофизических процессов в последнее время все чаще подразумевают использование методов машинного обучения или глубокого обучения. По данным Scopus (2000 — 2023 г.) наблюдается экспоненциальный рост количества статей с применением методов машинного обучения в науках о Земле начиная с 2017 года. Возможности современных статистических моделей применяют в задачах полевых измерений, при анализе геофизических полей, интерпретации данных дистанционного зондирования, моделирования отдельных геофизических процессов и т.д.

В Институте физики атмосферы им. А.М. Обухова РАН также проводятся исследования с использованием методов искусственного интеллекта. Именно о таких исследованиях и пойдет речь в этом посте.

1. ЛГГ
В Лаборатории геофизической гидродинамики (ЛГГ) реализуется задача, нацеленная на изучение методов интеллектуального анализа данных и машинного обучения для их последующего применения в процессе разработки адаптивных алгоритмов построения прогностических моделей наукастинга (прогноза на ближайшие часы) опасных погодных явлений (ОЯ). В силу своих небольших размеров ОЯ создают трудности для прогноза традиционными гидродинамическими моделями. В частности, в работе рассматривается проблема предупреждения угроз возникновения смерчей над Черным морем. Для подобного прогноза, в качестве входных данных наблюдений для классификации облачных ячеек по степени опасности формирования из них водяных смерчей используются спутниковые данные. В перспективе для усовершенствования модели планируется использование большего объема данных, в частности данных радиолокации.

2. ЛТК
Одновременно с этим, в Лаборатории теории климата (ЛТК) под руководством к.ф.-м.н. А.В. Чернокульского проводится работа по исследованию мезомасштабных конвективных систем (МКС) с использованием методов искусственного интеллекта. В работе были созданы: (a) инструмент GeoAnnotateAssisted для быстрой и удобной визуальной идентификации МКС на спутниковых снимках; (b) набор данных мезомасштабных конвективных систем над европейской территорией России (DaMesCoS-ETR) и (c) глубокая сверточная нейронная сеть для идентификации мезомасштабных конвективных систем (MesCoSNet), которая способна идентифицировать МКС в данных Meteosat. Автоматизированная идентификация МКС искусственной нейронной сетью MesCoSNet открывает новые возможности для ранее недоступных тем исследования МКС.

3. ЛМЭ
Старший научный сотрудник Лаборатории математической экологии (ЛМЭ) к.ф.-м.н. Г.А. Александров в своей работе «Когда искусственный интеллект заменит модели, основанные на процессах, в экологическом моделировании?» рассматривает вопрос возможности замены нейронными сетями физически обоснованных моделей. Дело в том, что накопление долгосрочных рядов данных снижает спрос на моделирование на основе физических процессов и выводит на первый план современные методы. К примеру, недавно был разработан пакет Python «NeuroDiffEq», который способен создать нейронную сеть для решения дифференциального уравнения с заданными значениями параметров. Созданная таким образом нейронная сеть используется для поиска параметров, соответствующих наблюдениям, а затем для прогнозирования значений зависимой переменной за пределами периода наблюдений. Другими словами, пакеты для решения дифференциальных уравнений с использованием нейронных сетей позволяют превращать модели, основанные на физических процессах, в нейронные сети. Однако, принимая во внимание, что целью экологических исследования является достижение предсказательного понимания физических процессов, в будущем можно ожидать скорее синергию между моделями и нейронными сетями.
Фото: от AI
Қайта жіберілді:
Клуб Vostok avatar
Клуб Vostok
Задача науки — не только открывать, но и рассказывать об этом обществу

На заседании Vostok Club, посвященном теме «Третий год Десятилетия науки и технологий: молодые учёные России», заместитель председателя Совета молодых ученых РАН, заместитель директора Института физики атмосферы им. А.М. Обухова РАН Александр Чернокульский подчеркнул важность экспертизы и популяризации науки. Он отметил, что ключевым моментом для продвижения научных инициатив является не только работа ученых, но и способность донести их результаты до широкой аудитории.

Александр Чернокульский отметил:
«Климат я хотел бы сделать бэкграундом для своего разговора. Важность экспертизы заключается в том, чтобы не было "лженауки", когда кто-то предлагает свою "суперидею" и сразу обращается к властям, но потом это попадает к нам на экспертизу, и мы видим, что это вообще полный вред. В климатической области особенно много таких ситуаций, где наука и мифы переплетаются. Экспертиза важна, чтобы наука двигалась в правильном направлении, чтобы не было тупиковых подходов и чтобы мы не оперировали мифами, а опирались на проверенные факты».


Спикер добавил, что популяризация науки — это другая важная сторона работы ученых. По его словам, «нужно рассказывать обществу о современных исследованиях, показывать, что мы уже точно знаем, а что еще предстоит узнать». Чернокульский акцентировал внимание на том, что научные популяризаторы должны быть действительно в теме и не останавливаться на старых знаниях. Эксперт привел пример, что иногда популяризаторы, которые не обновляют свою информацию, начинают говорить устаревшие вещи, что вводит людей в заблуждение.

Смотрите запись трансляции по ссылке.

➡️ Когда наука говорит языком, понятным всем. Vostok Club
#ифа_лабратории

🌲 Мы приветствуем всех в Новом Году и готовы вернуться к новостям о наших Лабораториях. Однако, пока Старый Новый Год не наступил, еще не поздно вспомнить некоторые достижения из предыдущего года.

📚 В 2024 году в издательстве МГУ им. М.В. Ломоносова «МАКС Пресс» вышло учебное пособие «МАТРИЧНЫЕ МОДЕЛИ БИОЛОГИЧЕСКИХ ПОПУЛЯЦИЙ: ПРАКТИЧЕСКИЙ КУРС», под авторством Д.О. Логофета – доктора физико-математических наук, профессора, главного научного сотрудника Лаборатории математической экологии Института физики атмосферы РАН и Н.Г. Улановой – доктора биологических наук, профессора кафедры экологии и географии растений Биологического факультета МГУ.

📊 В учебном пособии представлены теория построения и практика применения матричных моделей динамики одновидовых популяций с дискретной структурой – математического инструмента современных исследований в популяционный биологии. Пособие рекомендовано для подготовки бакалавров, магистров и аспирантов по таким специальностям, как: 1.5.8 – математическая биология, биоинформатика, 1.5.9 – ботаника, 1.5.15 – зоология. Пособие будет также полезно и тем специалистам, кто намерен использовать матричный аппарат в своих исследованиях.

🖌 Интересно отметить, что рисунок на обложке этой книги, в стиле итальянского ‘магического реализма’ начала 20 века, был создан с помощью искусственного интеллекта.
#ифа_события
Недавно мы уже писали про 🪙COP29, или #КС29 – Климатический саммит ООН по изменению климата 2024 года.

Сотрудники ИФА РАН также были среди участников конференции. В сессии 'Образование, инновации, ИИ, технологии - потенциально преобразующие аспекты в климатической повестки' одним из экспертов был А.В. Чернокульский, Заместитель директора Института физики
атмосферы имени А.М. Обухова РАН.

Также, в интервью в рамках COP29 Александр Чернокульский рассказал о том как наука видит современное изменение климата:
✅Причины климатических изменений: Влияет ли человеческая деятельность на глобальное потепление?
✅Цели Парижского соглашения: Почему важно удерживать рост глобальной температуры в пределах 1,5–2 °C и как это связано с экстремальными погодными явлениями.
✅Экстремальные погодные условия: Насколько учёные уверены в связи между изменением климата и участившимися природными катаклизмами.
✅Значение климатической осведомлённости: Почему каждому из нас важно понимать процессы изменения климата и их влияние на повседневную жизнь.

📺 Смотрите интервью, чтобы узнать, как наука объясняет текущие климатические тенденции и что мы можем сделать для их смягчения.
28.11.202410:46
#ифа_статьи

Рэмп – страшный зверь или очередной научный термин?

⌛️ Исследования турбулентных пульсаций в ИФА были начаты ещё в 50-х гг. прошлого столетия Перепелкиной А.В. и продолжены в 90-е гг. Копровым Б.И., Зубковским В.М., Копровым В.М., Фортус М.И., Макаровой Т.И., а с 2000-х – Чхетиани О.Г.

🧾 Недавно сотрудниками Лаборатории геофизической гидродинамики (ЛГГ) Малиновской Е.А. и Чхетиани О.Г., по данным пульсационных термоанемометрических измерений с использованием датчиков, разработанных Азизяном Г.В., опубликован цикл работ о структуре температурных пульсаций в конвективных условиях. Одна из таких работ: О структуре температурных пульсации вблизи поверхности в конвективных условиях [Малиновская Е.А. и др., 2024].

🌀 Конвективные вихревые образования разных масштабов вблизи нагретой поверхности в аридных условиях при слабых и умеренных ветрах способствуют выносу субмикронного аэрозоля и переносу тепла. Измерения скорости ветра и температуры воздуха демонстрируют сложные флуктуации во времени с повторяющимися когерентными структурами. 🪙В потоке данных могут быть выделены треугольные по форме элементы с пилообразными всплесками - «рэмпы», названными в 1958 г. Тейлором асимметричными треугольными волнами температуры.

продолжение👇
Уважаемые коллеги!

🚩Напоминаем, что 14 ноября 2024 г. в 14.00 состоится заседание Ученого совета ИФА им. А.М. Обухова РАН.

Будут представлены доклады:
✔️ Доклад с.н.с. ЛФВА, к.ф.-м. н. Варгин П. Н. «Особенности динамики нижней стратосферы Арктики в конце зимнего сезона по данным реанализа и моделирования».

✔️Доклад с.н.с. РАЛ, к.ф.-м. н. Люлюкин В. С. «Экспериментальные исследования АПС с помощью содарного зондирования: обзор работ ИФА им. А.М. Обухова РАН последних лет».
27.01.202508:01
Жгучая Санта-Ана или что раздувает пожары в Калифорнии 🔥

Комментирует Ирина Анатольевна Репина, д.ф.-м.н., зам. директора ИФА им. А.М. Обухова РАН.

🔈 В последние дни новостная лента заполнена тревожными сводками Калифорнии – огонь охватил пригороды одного из крупнейших городов США Лос-Анджелеса и не щадит ни особняки политиков и голливудских звёзд, ни скромные жилища добропорядочных налогоплательщиков, ни хижины бедняков. Но такое на юге Калифорнийского побережья случается далеко не впервые – пожары той или иной силы случаются практически каждый год. В 1956 году сгорел город Малибу, а в 1964-м и 1977-м — город Санта-Барбара. Катастрофические пожары отмечались в 2003, 2007, 2008, 2009, 2020 гг. За последние 20 лет число огненных катастроф увеличилось в 4 раза.

А виноват в этих пожарах сильный сухой ветер, который ежегодно в осенний период обрушивается на Южную Калифорнию и носит ласковое название Санта-Ана, то есть святая Анна. Относится от к классу катабатических ветров, названных так от греческого слова κατάβασις, означающего «схожу, спускаюсь». В названии уже заключена основная природа явления.

🌬 Катабатические ветры могут быть сильными и слабыми, нести похолодание или потепление, дуть в течение нескольких суток или всего лишь нескольких часов, но главное условие их возникновения одно — наличие склона. Эти ветра возникают на подветренных склонах при переваливании воздушными потоками горных препятствий. Санта-Ана – горячий сухой катабатический ветер, охватывающий побережье Южной Калифорнии от Сан Диего до Лос-Анжелеса. Приходит он обычно осенью или зимой и задувает на протяжении 3-4 недель, принося жару и засуху. Ветер имеет ярко выраженный суточный ход: днём его скорость усиливается до 30-40 км/час, а порывы – до 60-80 км/час; ночью ветер ослабевает до штиля или небольших скоростей. Влажность воздуха в эти дни падает до 20-40%. Трава и кустарники, уже подсохшие к концу лета, во время Санта-Аны загораются от одной искры. И любое загорание в считанные часы превращается в большой пожар.

🔘 Благоприятные для его возникновения условия складываются, когда в северной части Скалистых гор располагается антициклон, а к югу от него над Аризоной, находится область низкого атмосферного давления. Массы воздуха, двигающиеся из северной Невады и Юты нагреваются над пустыней Мохаве и отклоняются дальше на юго-запад, к побережью Тихого океана.
Ветер, разогнавшийся над просторами плато, попадает в узкие каньоны, ведущие к побережью Тихого океана, где сжимается и еще сильнее нагревается за счет адиабатического процесса. Самые сильные ветры отмечаются в долине реки Санта-Клара, в ущельях Кайон и Бэннинг. Также этот ветер известен как разносчик инфекционных болезней, в частности, калифорнийской лихорадки.

❔❔❔ Почему же этот страшный ветер назван именем святой? Есть две версии. Первая – имя святой Анны носит один из горных каньонов, где ветер разгоняется. Но наиболее вероятно, что изначально ветер логично назывался «сатана», потом из-за ошибки корреспондента став Санта-Аной. Северный брат Санты-Аны, несущий бедствия побережью в районе Сан-Франциско, называется Диабло, правда, не из-за жесткого характера ветра, а от долины и горы Диабло, со стороны которых ветер обычно дует. Нынешний случай интересен тем, что обычное время возникновения Санта-Аны все-таки октябрь. В январе такое явление бывает крайне редко.

📌Далее читайте по ссылке
21.01.202511:54
Как волновые процессы в атмосфере влияют на турбулентность? Рассказывают сотрудники Радиоакустической Лаборатории (РАЛ).

😖 Атмосферный пограничный слой (АПС) – это нижняя часть атмосферы, находящаяся в непосредственном контакте с подстилающей поверхностью. В зависимости от времени суток и сезона его толщина варьируется от нескольких метров до нескольких километров. Понимание процессов, происходящих в АПС чрезвычайно важно, он играет важную роль, например, в формировании погоды, которую мы наблюдаем и ощущаем ежедневно.

🔘Одна из проблем, над которой до сих пор работает множество исследователей – описание вертикального турбулентного обмена в АПС при устойчивой термической стратификации, необходимое для разработки и улучшения параметризаций, включаемых в прогностические численные модели атмосферы. В частности, недостаточно понятыми остаются процессы взаимодействия между турбулентными потоками и более крупными субмезомасштабными волнообразными структурами, часто наблюдаемыми в АПС при устойчивой термической стратификации.

*Субмезомасштабные атмосферные явления, характеризуются линейными размерами, лежащими между микроскопическими турбулентными и более крупными мезомасштабными (такими как синоптические системы), т.е. их масштабы варьируются от нескольких метров до нескольких километров. Волнообразные субмезомасштабные движения регулярно регистрируются при устойчивой стратификации в виде периодических колебаний метеорологических величин (скорости и направления ветра, температуры, давления), а также на высотно-временных изображениях, получаемых при помощи радаров, лидаров и содаров. Эти волнообразные движения влияют на распределение энергии в атмосфере и, соответсвенно, могут оказать существенное влияние на локальные атмосферные условия, например, результатом такого влияния может стать усиление вертикального турбулентного перемешивания.

🌫В работе представлены количественные оценки степени влияния волновых и вихревых структур на характеристики турбулентности в устойчиво стратифицированном АПС.
*Под устойчивой стратификацией понимается состояние атмосферы, когда температура уменьшается с высотой медленнее, чем сухоадиабатический градиент, что препятствует развитию вертикальных движений воздуха. В таких условиях по действием отклоняющей силы или вследствие сдвиговой неустойчивости могут возникать периодические волнообразные движения, влияющие на турбулентность.

😠Для исследования использовались данные длительных измерений, проводимых на Звенигородской научной станции ИФА с помощью акустических локаторов (содаров) и ультразвуковых термометров-анемометров. *Содары позволяют не только регистрировать разнообразные структуры в АПС, но и классифицировать их по наблюдаемой вертикальной форме по их изображению на высотно-временных развёртках компонент ветра и эхо-сигнала.

🐻‍❄️ В результате был выполнен анализ изменений турбулентной кинетической энергии, а также потоков тепла и импульса, сопровождающих периодические движения.
* Турбулентная кинетическая энергия – это мера интенсивности турбулентных вихрей в жидкости или газе.

📊 Анализ нескольких десятков эпизодов волновой активности позволил установить взаимосвязь между усилением турбулентности и степенью устойчивости АПС, что имеет важное значение для точности прогноза атмосферных процессов. Повышение упомянутых величин может свидетельствовать об интенсификации турбулентности в АПС, что, в свою очередь, влияет на распределение температуры и давления в атмосфере, а также на характер атмосферных фронтов и интенсивность осадков.

👇 Подробнее читайте в статье.
27.12.202412:56
Как влияют внутренние волны в Карском море на атмосферу?

💩 Внутренние гравитационные волны или внутренние волны образуются в океане, поскольку океан стратифицирован по плотности (плотность возрастает от поверхности ко дну). Внутренние волны оказывают существенное влияние на циркуляцию мирового океана, вертикальное перемешивание вод, а также горизонтальный и вертикальный перенос импульса и энергии.

🚤 В рамках экспедиции «Плавучий университет МФТИ—ИО РАН» на судне «Академик Иоффе» в августе 2021 года коллективом учёных из Института физики атмосферы им. А.М. Обухова РАН, Морского гидрофизического института и Московского физико-технического института было проведено исследование по изучению влияния внутренних волн в Карском море на турбулентные потоки импульса и тепла в приводном слое атмосферы.

💻 Проведены расчеты направления и горизонтальной скорости распространения короткопериодных внутренних волн в проливе Карские Ворота. Проанализированы кросс-спектры мезомасштабных флуктуаций температуры воды на поверхности моря, на глубинах 10 и 20 м, и метеорологических параметров (скорости ветра, атмосферного давления, температуры) на высоте 22 м. Выявлены общие спектральные максимумы на периодах, характерных как для захваченных внутренних гравитационных волн, распространяющихся в слое термоклина, так и для атмосферных гравитационных волн в устойчиво-стратифицированном слое нижней тропосферы. Предложен механизм влияния наблюдаемых внутренних гравитационных волн в слое термоклина на мезомасштабные флуктуации метеопараметров с периодами от нескольких минут до нескольких часов, и турбулентные потоки импульса, явного и скрытого тепла в приводном слое атмосферы.

⤵️Материал опубликован в научной статье и научно-популярной заметке.
Уважаемые коллеги!

📍12 декабря (четверг) в конференц-зале ИФА в 14:00 состоится семинар Отдела динамики атмосферы.

Будет представлен доклад Павла Сергеевича Берлова (Имперский колледж, Лондон, Великобритания): "Динамически согласованные флуктуации: Новая цель для параметризаций?"

🌀 Проблема определения океанических мезомасштабных вихрей остается в целом нерешенной задачей. В исследовании использовалась модель с грубой сеткой для динамической реконструкции неразрешенных вихрей, которые на самом деле являются ошибками поля на динамически разрешенной крупномасштабной эталонной циркуляции. Методология была тщательно реализована, и ее преимущества обсуждаются вместе со свойствами реконструированных вихрей. Пока результаты ограничены квазигеострофическим приближением, но служат как доказательством концепции, так и отправной точкой для последующего расширения в примитивные уравнения, которые обычно используются в моделях общей циркуляции океана.

🧾Более подробно читайте в статье Berloff, P. (2016).

Для онлайн подключения к лекции пишите на почту media@ifaran.ru.
Уважаемые коллеги!

🚩Напоминаем, что 28 ноября 2024 г. в 14:00 в конференц-зале ИФА состоится заседание ученого совета ИФА им. А.М. Обухова РАН.

Будут представлены следующие доклады:
🔘Доклад д.ф.-м.н., проф., зав.лаб. ЛОМА Г.И. Горчакова (Горчаков Г.И., А.В. Карпов, Р.А. Гущин, О.И. Даценко)
«Селективное поглощение коротковолновой солнечной радиации дымной мглой и пыльной мглой».
🔘 Доклад м.н.с. ЛТРВ А.Е. Мамонтова (А.Е. Мамонтов, О.В. Федорова, М.Е. Горбунов)
«Пространственные распределения аэрозоля в тропосфере по данным проекта DELICAT».
#ифа_события

🌐 29 -31 октября в Санкт-Петербурге состоялся "VIII Всероссийский объединённый метеорологический и гидрологический съезд" посвящённый 190-летию Гидрометеорологической службы России, в котором приняли участие сотрудники Института физики атмосферы им. А.М.Обухова РАН. Площадка объединила около 800 ведущих специалистов отрасли из России, Белоруссии, Индии, Китая и ОАЭ.

✔️Тема Съезда в этом году была «Воздух, вода и устойчивое развитие», основной целью стало обсуждение наиболее актуальных проблем метеорологической и гидрологической науки и практики в условиях изменения климата, а также развитие взаимодействия научных сообществ на национальном и международном уровнях.

📒 Директор ИФА, д.ф.-м.н. Семёнов В. А. провел секцию "Метеорологические исследования, прогнозирование погоды и климата", в которой представили свои доклады заместитель директора ИФА, к.ф.-м.н. Чернокульский А.В. "Опасные атмосферные конвективные явления России", н.с. ИФА, к.г.н. Варенцов М.И. "Влияние городов на погоду и климат: наблюдения, моделирование и прогноз". Зав. лаб. ИФА, д.ф.-м.н. Куличков С.Н. выступил в секции "Геофизические исследования атмосферы и ионосферы" с докладом «Структура атмосферы как «кочан капусты» по данным акустического зондирования». Заместитель директора ИФА, д. ф.-м. н. Репина И. А. приняла участие в круглых столах "Росгидромет и партнёрство в Арктике и Антарктике" и "Реализация ВИПГЗ «Единая национальная система мониторинга климатически активных веществ» и ФНТП в области экологического развития РФ и климатических изменений на 2021 – 2030 годы".

☁️"VIII Всероссийский объединенный метеорологический и гидрологический съезд" стал самым крупным мероприятием в области гидрологии и метеорологии за последние четыре десятилетия. В рамках съезда работало 11 научных секций и 9 круглых столов. Особым событием съезда стала международная выставка «Погода. Климат. Вода / Дистанционное зондирование Земли / Зеленая экономика». На ней было представлено гидрометеорологическое оборудование в основном отечественных производителей. Выставка показала, что импортозамещение в сфере гидрометеорологического оборудования и программного обеспечения не является только лозунгом – в нашей стране есть конкурентноспособные разработки, выполненные на мировом уровне.
Көрсетілген 1 - 24 арасынан 36
Көбірек мүмкіндіктерді ашу үшін кіріңіз.