Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Инсайдер UA
Инсайдер UA
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Инсайдер UA
Инсайдер UA
Путеводитель по док.политике avatar

Путеводитель по док.политике

Канал обо всем, что связано с доказательным принятием управленческих решений: оценка программ и политик, стратегический аудит, бюджетирование на основе результатов, прикладная аналитика данных.
TGlist rating
0
0
TypePublic
Verification
Not verified
Trust
Not trusted
Location
LanguageOther
Channel creation dateDec 12, 2020
Added to TGlist
Feb 11, 2025
Linked chat

Statistic of Telegram Channel Путеводитель по док.политике

Subscribers

644

24 hours
1
-0.2%Week
4
0.6%Month
3
0.5%

Citation index

0

Mentions0Shares on channels0Mentions on channels0

Average views per post

0

12 hours00%24 hours00%48 hours00%

Engagement rate (ER)

0%

Reposts0Comments0Reactions0

Engagement rate by reach (ERR)

0%

24 hours0%Week0%Month0%

Average views per ad post

0

1 hour00%1 – 4 hours00%4 - 24 hours00%
Connect our bot to the channel to find out the gender distribution of this channel's audience.
Total posts in 24 hours
1
Dynamic
1

Latest posts in group "Путеводитель по док.политике"

Мы проводим хакатон на муниципальных данных. Среди задач - аналитика муниципалитетов и регионов, AI-агенты и визуализация детальных данных. Официальная статистика сосредоточена на федеральных и региональных данных, но самое ценное - на уровнях ниже. Участвуйте, будет интересно! 7 июня, Кутузовский, 32

https://www.sberbank.com/ru/hackathon_sberindex
Этот день – повод напомнить о масштабном проекте Счетной палаты – «Архив». На специальной странице нашего сайта вы можете найти более 3500 оцифрованных проверок СП с 1996 года.
Сила историй: цифры не всегда громче всех, и это полезно знать для бизнеса, СМИ и policy

Я уже писала о примечательной, но противоречивой силе числовых фактов, почти автоматически связанных с доверием и объективностью.

Недавнее экспериментальное исследование показывает, что статистика (количественные данные) и истории (качественный нарратив) по-разному влияют на формирование убеждений [1].

В результате ограничений памяти убеждения частично возвращаются со временем к исходному априорному значению для обоих типов информации. Но исследователи обнаружили различие между статистикой и историями в динамике изменения убеждений: влияние историй на убеждения ослабевает меньше, чем влияние статистики.

◽️ Статистика воспринимается как более информативная и в краткосрочной перспективе (Immediate) оказывает большее влияние на убеждения, чем истории.
◽️ Но со временем (Delay) ситуация меняется: влияние статистики уменьшается, и истории в итоге могут оказывать более сильное воздействие. Величина возврата убеждений к априорному значению более чем в два раза выше для статистики (73%), чем для историй (33%), что указывает на более устойчивое воздействие качественных нарративов на убеждения.

Преимущество историй еще и в том, что истории не только "очеловечивают" абстрактные числа, но и помещают данные в запоминаемый контекст. Истории, обогащенные качественными деталями и семантическими связями, легче вспоминаются: участники эксперимента в 62% случаев правильно вспоминали детали историй по сравнению с 27% для статистики.

[1] Graeber, T., Roth, C., & Zimmermann, F. (2024). Stories, statistics, and memory. The Quarterly Journal of Economics, qjae020.
Анализ российских данных на внутрирегиональном уровне осложняется изменениями границ муниципальных образований, изменениями их типов, названий и кодов ОКТМО.

С 2018 по 2024 гг. изменилась муниципальная структура более 40 регионов:
◽️ есть регионы, где все муниципалитеты меняли свои типы - Магаданская и Курганская области, Ставропольский край, ЯНАО, Удмуртия и др.;
◽️есть регионы, где было большое количество изменений границ - Московская область, Пермский край и др. - около 3% муниципалитетов России в 17 регионах.

Масштаб изменений сильно осложняет сбор панельных данных по муниципалитетам. При этом процесс преобразований не прекращается. Но удобных открытых машиночитаемых данных о таких преобразованиях нет.

Поэтому мы собрали базу данных об изменениях муниципалитетов и их границ, теперь можно:
🔸прочитать в статье на habr о проблемах данных на муниципальном уровне и как мы собрали и объединили данные из Росстата и OpenStreetMap;
🔸скачать с сайта СберИндекса версионный справочник муниципальных образований и пространственный слой с границами муниципалитетов с 2018 г.
 
Эта информация может помочь:
◽️ геоаналитикам, заинтересованным в данных о границах муниципальных образований
◽️исследователям, которые работают с муниципальными данными
◽️при проектировании БДПМО 2.0. Росстата
Мы ищем аналитика в Сбериндекс для развития портала открытых данных

Сбериндекс - это исследовательская лаборатория Сбера, которая работает над экономической статистикой на основе транзакционных данных банка. Осенью этого года мы начинаем модернизацию сайта открытых данных www.sberindex.ru, которая ориентирована на рост детальности наборов данных и удобство для пользователей. Мы ищем аналитика, которому было бы интересно внедрять передовые практики поставки статистических данных и развивать функциональность портала открытых данных.

Обязанности и функции:
◽️ Проводить анализ передовых практик порталов и стандартов открытых статистических данных , быть заказчиком и консультантом в проектировании и разработке портала открытых данных
◽️ Быть менеджером продукта - администрирование, мониторинг размещения данных, интеграций, инициация изменений, стратегия развития портала и т.д.
◽️ Координировать и организовывать сотрудничество с разработчиками, пользователями, поставщиками данных, исследователями
◽️ Участвовать в разработке дэшбордов, визуализаций данных, лендингов для исследований совместно с аналитиками данных
◽️ Разрабатывать техническую документацию, руководства для пользователей, стандарты лучших практик, схемы рабочих процессов для публикации данных
◽️ Помогать пользователям и владельцам данных, проводить обучение, информировать о работе портала

Требования:
◽️ высшее образование (техническая специальность)
◽️ прикладные навыки использования основных библиотек Python
◽️ знание основ управления данными, баз данных, визуализации данных, опыт работы с API
◽️ знание различных форматов данных (parquet, JSON-Stat, CSV и т.п.) и метаданных
◽️ интерес к стандартам и практикам публикации открытых данных, готовность погружаться в изучение и внедрение лучших практик
◽️ плюсом будут навыки разработки технических требований, знакомство с процессами разработки порталов данных, умение определять потребности пользователей дата-продуктов

Резюме и мотивационное письмо можно направлять на dtsyplakova@gmail.com
Ключевая задача оценки или аудита - разработка критериев. Даже если нет подходящих показателей в проекте (федпроекте, госзадании и т.п.), это не означает, что возможность оценки эффектов отсутствует. Собственно, даже если показатель в проекте есть, остается задача, насколько сам проект на самом деле «шевелит» этот показатель.

«Государственное задание Центра и результаты федеральных проектов, в реализации которых он участвует, не содержат параметров, позволяющих оценивать влияние проводимых мероприятий на целевую аудиторию. В связи с этим отсутствует возможность оценки возникающих социальных эффектов, что в свою очередь не позволяет оценить обоснованность масштабов организации мероприятий в сфере молодежной политики».

https://t.me/kuzmalexey/79
Спасибо, тема точно есть. Как решение, предлагаю рассматривать два вида доказательств: быстрые и медленные.

Быстрые доказательства - те, что можно найти для решений, которые требуют принятия в диапазоне от трёх часов до месяца.

Медленные - соответственно более месяца.

Если исходно понимать, что для руководителей могут быть необходимы как быстрые, так и медленные, то к этому следует готовиться.

Так, например, для быстрых доказательств хорошего качества - нужна заранее подготовленная база экспертов, реестр исследований по теме, наличие "законсервированных" данных, полученных ранее, во время проведения долгосрочных исследований. Тогда, мы в момент поступления задачи по подготовке аргументов стартуем не с чистого листа.

С медленными доказательствами хорошего качества чуть проще, поскольку время позволяет делать очень многие вещи, вплоть до экспериментов
Неправильные данные: любой ответ в кратчайший срок?

В мире, где данные играют ключевую роль в принятии решений, удивительно часто появляется утверждение "лучше плохие данные/ доказательства, чем вообще никаких".

Понятно, что есть два случая:
◽️ данные ‘плохие’, но есть понимание их ограничений и качества. Тогда аналитика может быть ценной, потому что раскрывает важные механизмы бизнеса, сбои в процессах, выступает в свою очередь фактором улучшения качества данных. Но результаты и выводы должны учитывать качество доказательств. Как правило, градус риторики в этом случае должен ослабляться.
◽️ данные ‘плохие’, нет понимания ограничений качества. Прямая дорога к принятию неверных решений (мусор на входе - мусор на выходе).

Почему люди в принципе стремятся опираться на данные, даже без оглядки на их качество?

Во-первых, текстовая информация, которая сопровождается числовыми данными, создает впечатление объективности, конкретности, точности, измеримости и структурированности. Сам поиск и обработка данных для аргументации занимает время, так что невольно кажется, что аргумент “с данными” вызывает доверие. Кроме того, в науке использование данных - общая практика, так что опора на числовые данные придает ауру научности и профессионализма. Даже без реальной аналитики.

Во-вторых, человек автоматически предпочитает “любые данные, не обязательно качественные” из-за предпочтения определенности. Неопределенность вызывает дискомфорт, чувство определенности и уверенности - желаемое эмоциональное состояние, результат действия непроизвольных механизмов мозга за пределами сознательного выбора и мыслительного процесса. Такие механизмы направлены на снижение когнитивной перегрузки и преодоление парализующего страха неопределенности, это целый ансамбль когнитивных искажений.

Например, организация сталкивается с проблемой (например, неожиданное снижение продаж). Проблема может быть вызвана разными факторами, но реальная причина неизвестна. К тому же, для организации это одна проблема из целого множества, требующих реакции. Потребность в когнитивном закрытии подталкивает к формированию окончательного мнения и быстрому принятию решения. Для этого на практике может подойти самый первый ответ, лежащий на поверхности, если этот ответ подкрепляется хоть какими-то данными. Почему?

Нерешенная проблема создает напряжение, заставляет возвращаться к решению и мешает заниматься другими задачами. Такое наблюдение было описано в исследованиях Б.Зейгарник о том, что люди склонны запоминать незавершенные задачи и стремиться их завершить. Силы, стоящие за этим механизмом поиска “любого ответа в кратчайший срок”, нацелены на быструю адаптацию и высвобождение ресурсов. Но приводят к системному недостатку более глубокого и детального исследования новых или противоречивых данных, а значит к стратегическим рискам ошибочных решений.

Можно ли на организационном уровне полностью избавиться от подобных искажений data-driven решений? Проблему точно нужно решать. Полноценные исследования “на данных” требуют времени, ресурсов и связаны с высокой неопределенностью. Но даже не полное исследование, а его часть может быть полезна - оценка областей риска, генерация гипотез, анализ релевантной литературы, описательные статистики с аккуратной интерпретацией. Одно из потенциальных решений - фокусировка на приоритетных областях и подготовка по ним исследовательской повестки с более длинным горизонтом для получения результата.

Ситуация осложняется тем, что более точная информация сложнее, чем упрощенные и быстрые версии, что требует больше усилий как для понимания, так и для коммуникации. Многим известна проблема, когда человеку легче объяснить, что данных вообще нет, чем что данные есть, но использовать их нельзя из-за низкого качества. Коммуникация качества данных - непростая задача.

Records

13.02.202523:59
646Subscribers
16.01.202502:57
200Citation index
31.05.202523:59
405Average views per post
24.05.202523:59
405Average views per ad post
19.05.202516:55
0.00%ER
03.05.202517:17
0.00%ERR
Subscribers
Citation index
Avg views per post
Avg views per ad post
ER
ERR
FEB '25MAR '25APR '25MAY '25

Popular posts Путеводитель по док.политике

19.05.202507:37
Мы проводим хакатон на муниципальных данных. Среди задач - аналитика муниципалитетов и регионов, AI-агенты и визуализация детальных данных. Официальная статистика сосредоточена на федеральных и региональных данных, но самое ценное - на уровнях ниже. Участвуйте, будет интересно! 7 июня, Кутузовский, 32

https://www.sberbank.com/ru/hackathon_sberindex
Log in to unlock more functionality.