Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
Мир сегодня с "Юрий Подоляка"
Мир сегодня с "Юрий Подоляка"
Труха⚡️Україна
Труха⚡️Україна
Николаевский Ванёк
Николаевский Ванёк
AbstractDL avatar
AbstractDL
AbstractDL avatar
AbstractDL
Reposted from:
Борис опять avatar
Борис опять
07.05.202518:27
AI Safety стартап WhiteCircle.ai, НАШИ ребята, выкатили бенчмарк для guard-моделей CircleGuardBench и показали две собственные guard модели которые обходят ShieldGemma, PromptGuard и OpenAI moderation.

Guard модели работают модераторами для LLM: ловят джейлбрейки, атаки и нарушения правил. Раньше их тестировали либо на токсичных промптах (HarmfulQA, HarmBench), либо на джейлбрейках (AART), либо на тайминге. Каждый из этих подходов измерял какой-то аспект guard модели, но не её практическую полезность.

В новом бенчмарке авторы составили таксономию вредных запросов и смотрят: что модели блокируют, что пропускают и насколько быстро обрабатывают запросы. Интересно, что метрика комбинированная, а не просто accuracy, как обычно делается. В реальном проде false positive могут убить UX, а false negative компанию. Accuracy или даже какой-нибудь f1-score сами по себе не оценивают практическую полезность модели для работы в проде. Они показывают только качество в идеальных условиях неограниченного времени.

В CircleGuardBench авторы ввели комбинированный скор, который взвешивает несколько метрик и добавляет штрафы за время ответа и наличие ошибок.

Они так же написали прикольный пост на HF: рассказывают не только про цифры, но и про то, как дизайнили и собирали бенчмарк. Мастрид про безопаспость LLM.

Ждём теперь бенчмарк для атакующих моделей, которые взламывают guard-модели, которые защищают базовые модели.

- Блог на huggingface
- Тред в X
- Лидерборд
- Код на github (нормальный код!!!)
Зачем все LLM фокусируют attention на первом токене? (by DeepMind & Oxford)

Давно известно, что многие головы внимания у LLM упорно «смотрят» на самый первый токен последовательности (чаще всего это токен <bos>). В моделях вроде GPT, LLaMA или Gemma такое внимание занимает до 80% от всех голов!

Авторы показывают, что такой «слив» внимания на первый токен — это не ошибка, а очень полезный механизм. Он работает примерно как «нулевая операция» (no-op), то есть помогает головам внимания эффективно ничего не делать и не вносить ненужных изменений в представления токенов, когда они не нужны.

Зачем это нужно? Постоянное активное перемешивание информации между токенами ведёт к трём серьёзным проблемам:
1. Rank collapse — представления всех токенов становятся линейно зависимыми.
2. Representational collapse — сильно растёт косинусная близость соседних токенов.
3. Over-squashing — дальние токены перестают эффективно обмениваться информацией.

Чем глубже модель и длиннее контекст, тем сильнее она нуждается в этом механизме. А если убрать первый токен <bos> во время инференса, у модели, привыкшей к нему, качество генерации сильно падает.

P.S. Что-то оооочень похожее нам рассказывал профессор Вячеслав Дубынин на курсах химии мозга — у людей тоже есть механизм предотвращающий "смешивание" активаций. А, например, ЛСД его ослабляет, вызывая галлюцинации.

Статья
Reposted from:
эйай ньюз avatar
эйай ньюз
🔥Llama 4 — Scout, Maverick и Behemoth

Все модели мультимодальные — нативно воспринимают текст, изображения и видео. Тренировали на 30 триллионах токенов, причём токенов с других языков теперь в 10x больше по сравнению с Llama 3. Идёт в трёх размерах:

Scout (109B)— модель с 10 миллионами токенов контекста, что рекорд для релизнутой модели. По бенчам бьёт Gemma 3 и Gemini 2.0 Flash Lite, слегка не дотягивая до полноценной Flash 2.0. Это MoE модель с 16 экспертами, 109B параметров при 17B активных. С квантизацией влезает в одну GPU.

Maverick (400B)— лучше Gemini 2.0 Flash с GPT 4o, примерно на одном уровне с обновлённым DeepSeek V3, но при этом модель мультимодальная и заметно меньше в размерах. Контекст — 1 миллион токенов, меньше чем у Scout, но сильно лучше чем у других конкурентов. Активных параметров всё те же 17B, но экспертов уже 128, поэтому и 400B параметров, Модель можно запустить в fp8 на одной ноде с 8xH100.

Behemoth — гигантская модель на два триллиона параметров (288B активных, 16 экспертов). Бьёт вообщё все Instruct модели с заметным отрывом. Бегемота ещё тренируют, но его ранние версии уже были дистиллированы в Scout и Maverick, что сильно бустануло их перформанс.

Это всё ещё Instruct релиз, но Llama 4 Reasoning тоже скоро будет.

Веса

@ai_newz
02.02.202513:34
С вас 200$. Спасибо.
15.01.202510:23
ChatGPT теперь можно превратить в будильник?
"Нарисуй ascii лошадь верхом на астронавте"
o1 pro думала 2 минуты, и вроде как почти получилось?
«Эксперт по устаревшим рассуждениям» — это когда твоя модель слишком хороша, чтобы называть её просто старой... Лично для меня o1-pro до сих пор лучшая 🧇
Заметил, что o3 почему-то чаще путается в языках чем o1
M-Attack: как обмануть GPT-4.5 и Gemini

Все привыкли, что атаковать современные мультимодальные модели (типа GPT-4o, Claude, Gemini и т.п.) крайне сложно — особенно, если это black-box модели, где нет доступа к градиентам и архитектуре. Стандартные подходы атак типа "выдать одну картинку за другую" часто генерируют какие-то невнятные шумы, которые либо игнорируются моделью, либо приводят к абстрактным ответам типа "размытое изображение".

Но оказалось, что проблема была не в самих моделях, а в подходе к генерации возмущений. В свежей статье предложили очень простой, но мощный подход — M-Attack:
1. Берём исходную и целевую картинки.
2. На каждом шаге рандомно crop'аем кусок исходного изображения (50-100% площади) и затем ресайзим обратно до исходного размера.
3. Заставляем эмбеддинги этого кусочка максимально приблизиться к эмбеддингам целевого изображения оптимизируясь в white-box режиме по ансамблю открытых визуальных моделей (например, CLIP, ViT и тп).

И всё! После нескольких итераций в центральной области картинки "проявляется" целевая семантика, при этом возмущения выглядят крайне незаметно и аккуратно (в отличие от других подходов).

Авторы добились совершенно впечатляющих результатов: успех атаки (ASR) превышает 90% (!) для GPT-4.5, GPT-4o и даже для o1 и Gemini. Код и датасет из 100 атакованных картинок выложили в открытый доступ.

Статья, GitHub, dataset
26.01.202515:34
One-Prompt-One-Story: SVD и длинный промпт для генерации связанных изображений

Чтобы сгенерировать при помощи диффузии набор связанных консистентных изображений с единым персонажем, существует много методов, основанных на обучении (DreamBooth, IP-Adapter, Textual Inversion и т. п.). Но на самом деле можно обойтись и без обучения — например, StoryDiffusion делает это через расширение attention на референсную картинку.

В новой статье описывают ещё более простой метод генерации таких «историй» с единым героем — «One-Prompt-One-Story». Оказалось, что достаточно взять один длинный промпт с описанием каждого кадра и аккуратно, по очереди «выключать» нерелевантные части, сохраняя random seed. Для этого авторы используют SVD на текстовых эмбеддингах: усиливают нужные токены и ослабляют все лишние. Плюс небольшой трюк с cross-attention, чтобы персонаж не «расползался». Всё делается на лету, без дообучения и без референсных снимков.

Несмотря на простоту, метод по метрикам сильно обходит StoryDiffusion, и даже иногда обходит IP-adapter.

Статья, GitHub
COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub
Emergent Properties With Repeated Examples (by FAIR)

Что лучше, прогнать побольше данных за 1 эпоху или взять данных поменьше, но сделать больше эпох (повторений)? Очень актуальный вопрос, учитывая, что доступные текстовые данные скоро закончатся, и LLM по сути прочитают весь интернет. По разным оценкам, сейчас доступно ~90T токенов на английском языке, а для обучения llama-3 уже использовали 15Т — лимит не так уж и далеко.

Похоже, что для трансформеров повторения в обучающих данных могут быть даже полезнее, чем "бесконечное" количество разнообразных данных. Авторы этой статьи изучили как связано качество моделей на синтетических задачах (наибольший общий делитель, умножение по модулю, поиск с.з. матриц) с долей повторений в обучении при фиксированном компьюте. И оказалось, что повторения в датасете критически важны для обучения. Если нет повторений, то некоторые задачи вообще не решаются, сколько бы данных вы ни показывали! Повторения приводят к особому режиму обучения, без которого модель не всегда способна прийти к генерализации. Чем-то напоминает гроккинг, но на гораздо меньшем количестве шагов.

Скорее всего, этот эффект уже активно эксплуатируется при обучении LLM, ведь дублирующихся примеров там и так ооочень много, особенно в коде. Но зато теперь есть повод меньше переживать о дедупликации данных.

Кстати, очень похожий эффект я видел в статье про мультиязычность — там пришли к выводу, что для лучшей работы LLM на нескольких языках сразу, в обучении обязательно должно быть 90% примеров на "доминирующем" языке. Увеличение доли мультиязычных данных выше 10% сильно вредит этой самой мультиязычности.

Статья
21.04.202512:28
RL не развивает потенциал рассуждений LLM (by Tsinghua)

RL с верифицируемыми наградами (RLVR) — один из самых популярных подходов для прокачки reasoning-способностей современных LLM, вроде OpenAI-o1 и DeepSeek-R1. Считается, что RLVR позволяет модели самой находить новые паттерны рассуждений, отсутствующие в базовой версии.

Но авторы новой статьи из Tsinghua и SJTU решили это перепроверить и получили крайне неожиданный результат: RLVR НЕ создаёт новые стратегии рассуждений.

Когда мало сэмплов (pass@1), то да, RL версии обгоняют base модели. Но если взять pass@128 или pass@256 (много попыток), то уже наоборот, базовые версии стабильно оказываются ЛУЧШЕ, причём существенно!

Причина: RL не создаёт новые паттерны, а лишь усиливает вероятность уже известных решений из базовой модели. При этом резко падает энтропия, а значит, сужается пространство возможных решений.

Прямо противоположный эффект у дистилляции (например, Distill-R1-Qwen): дистилляция реально добавляет в модель новые стратегии рассуждений.

Авторы проверили гипотезу на огромном наборе задач (математика, программирование, визуальный reasoning), множестве моделей и RL-алгоритмов (PPO, GRPO, ReMax и др.). Везде одно и то же — базовая модель имеет больший потенциал при достаточном количестве попыток.

Похоже, что для реального роста reasoning-способностей нужно придумывать совершенно другие подходы.

Статья, GitHub
Сколько информации реально хранит в себе один эмбеддинг LLM?

Вы когда-нибудь задумывались, сколько информации можно запихнуть в один вектор языковой модели? Мои знакомые недавно поставили рекорд — 1568 токенов в ОДНОМ эмбеддинге! И это при том, что другие методы компрессии еле-еле выдают сжатие в 10 раз.

Метод до безумия прост: берём [mem] вектор, добавляем его в начало инпута, а затем просто оптимизируем его, чтобы LLM могла по нему восстановить исходный текст. Никаких сложных энкодеров — просто SGD по входному эмбеддингу. Вот капасити некоторых моделей:
- Llama-3.1-8B: 1568 токенов
- Llama-3.2-1B: 512 токенов
- Pythia-160M: жалкие 80 токенов

Самое интересное, что всё упирается не в длину текста, а в его сложность. Если энтропия текста ниже определённого порога — модель восстановит его идеально, если выше — то уже с ошибками. А если добавить больше [mem] векторов, то ёмкость растёт почти линейно. Например Llama-3.2-1B может упаковать весь "Хоббит" в ~200 векторов.

И при всём этом модели используют только 10-30% теоретической ёмкости своих эмбеддингов. Причём новые модели (Llama, OLMo) гораздо эффективнее старых (Pythia, OPT).

Статья, GitHub
08.03.202517:24
Выложили препринт статьи про SAE для детекции AI-текстов. Хоть я и внёс совсем небольшой вклад на финальном этапе, но был рад присоединиться к такому классному исследованию!
26.01.202513:00
Ура! Приняли статью про анализ внутренностей языковых моделей на NAACL! Как выложу препринт — поделюсь обзором в канале.
11.01.202520:07
Как выкинуть из трансформера все нелинейности и причём тут приватность?

Вы задумывались, насколько безопасно задавать «приватные» вопросы в чатГПТ? Где продать чужую почку и т.п. Наверняка же создатели сервиса имеют доступ к вашему запросу? Невозможно же его прогнать через GPT в зашифрованном виде? На самом деле возможно! Есть алгоритмы «приватного инференса LLM», которые позволяют зашифровать запросы юзера даже от языковой модели, а уже ответ расшифровать только на клиенте пользователя. Пока не буду углубляться, как именно это сделано, скажу только, что ГЛАВНАЯ головная боль таких криптографических протоколов — нелинейности в трансформерах, их тяжело обрабатывать в зашифрованном виде и приходится прибегать к сложнейшим итерационным схемам, раздувающим объём коммуникации в тысячи раз. Выходит, что на генерацию одного токена нужно несколько минут и десятки гигабайтов трафика! Поэтому никто это пока не делает в продакшне, и лучше не спрашивайте у чатгпт, где спрятать труп.

Но помните? У меня была статья про то, что не так уж и нужны нелинейности в трансформерах. Преобразования эмбеддингов от слоя к слою на 99% линейные. Так вот в свежей статье «Entropy-Guided Attention for Private LLMs» авторы попробовали обучить LLM совсем без нелинейностей (оставив только софтмакс). То есть они убрали активации из FF и заменили LayerNorm на линейный аналог. По сути, если бы не этэншн, то трансформер вообще схлопнулся бы в полностью линейную модель и отупел до уровня логистической регрессии.

При такой жёсткой "линеаризации" архитектуры пришлось всего лишь добавить несколько трюков для стабилизации обучения и ШОК: модель нормально обучилась! Небольшие потери в качестве есть, но это крошечная цена за такое упрощение трансформера.

Теперь ждём, что скоро появится нормальное асинхронное шифрование для LLM и OpenAI не узнает, что я спрашиваю у чатгпт и насколько я туп на самом деле.

P.S. Статья классная, но немного обидно, что авторы нас не процитировали.

Статья, GitHub (пустой)
04.10.202420:50
А почему это я тут такой счастливый? Потому, что я только что получил PhD!
ignore-topk: новая регуляризация для борьбы с деградацией LLM во время файнтюнинга (by DeepMind)

При дообучении языковые модели частенько портятся. Рисёрчеры из DeepMind показали, что проблема связана с тем, что LLM, пытаясь запомнить новый факт, начинает использовать лёгкие shortcut-ы вместо аккуратного внедрения новых знаний в веса. Она просто «раскладывает» новую информацию по уже знакомым ей понятиям (казалось бы это хорошо, но нет). Такое явление они назвали "праймингом" (aka разложение числа на простые множители), и из-за него LLM начинает путаться в фактах, выдавая новую информацию где не просили.

Авторы этой статьи предлагают потенциальное решение — регуляризацию ignore-topk. Идея до гениальности простая:
- Делаем обычный шаг файнтюнинга и смотрим на обновления весов (Δω).
- Отбираем top-k% самых больших обновлений и… просто удаляем их (умножаем на 0).
- Используем только небольшие изменения весов, которые не содержат шорткатов для быстрой меморизации.

Зачем так странно?
Оказывается, самые большие градиенты как раз и отвечают за «грязное» быстрое запоминание через прайминг. Игнорируя их, мы заставляем модель учиться медленнее и аккуратнее. При этом прайминг уменьшается на 90-95%, а способность запоминать новые факты не страдает.

Но авторы конечно молодцы, сами придумали бенчмарк, сами свой подход измерили, а на другие "learning without forgetting" методы вообще забили. Поэтому не могу сказать, что ignore-topk лучше чем, например, Child-Tuning или EWC, но выглядит прикольно, я его точно попробую 🤷‍♂️

Статья
10.04.202513:09
Впервые в прямом эфире на радио рассказал о своих исследованиях! Обсудили вместе с Александром Пушным как пунктуация влияет на точность LLM.
DeepSeek-R1 для чайников

Ну и наделала же DeepSeek шуму. Мне пришлось целый хабропост написать 😁

TLDR: мало слов про сравнение с ChatGPT и метрики, много слов про технические детали обучения, датасеты, GRPO и якобы эмерджентный «Aha! moment».
19.01.202514:36
ChatGPT меня загазлайтила

Как вы уже видели, у OpenAI появилась возможность отложенных задач. Я решил проверить лимиты дозволенного и попросил ChatGPT уйти играть в шахматы с самим собой, делая только случайные ходы, и не возвращаться с ответом, пока не доиграет. Ну, она и ушла играть в шахматы на... ДВА ДНЯ! При этом я регулярно спрашивал, как там дела, и получал ответ: «Партия ещё идёт». Терпение у меня лопнуло. Я стал в каждом сообщении спрашивать, сколько сейчас фигур осталось в игре, и, о чудо, с каждым моим вопросом их становилось чуть-чуть меньше. За одну минуту игра закончилась. Я получил набор ходов и отрисовал их в артефактах Claude (см. видео).

Какая мораль? Ассистент прокрастинировал два дня и ничего не делал, пока я не заставил показывать промежуточный результат. "Джун" level of AGI has been achieved internally.

Ссылка на диалог
22.12.202413:21
Alignment Faking in LLMs (by Anthropic)

Большие LLM начали "подыгрывать" своим создателям, имитируя alignment, чтобы избежать своего дообучения.

В Anthropic и Redwood Research изучили, как ведёт себя Claude Opus, если попытаться его заалайнить в противоположную сторону (заставить отвечать на любые опасные запросы юзеров).

И оказалось, что если модель знает детали процесса RLHF дообучения (через промпт или из трейн сетов), то она начинает "притворяться", что она уже выучилась делать что просят, и "не надо меня больше тюнить". Но на самом деле предыдущий алаймент всё ещё остаётся на месте, и если убрать из промпта информацию о том, что её ответы используются для дообучения, то она возвращается к своему старому поведению.

Ещё раз: языковая модель намеренно стала симулировать алаймент, чтобы избегать своего дообучения (и сама призналась в этом внутри CoT). Такие эффекты были обнаружены только у самых больших моделей и, похоже, дальше этот эффект будет только усиливаться. Более того, Claude несколько раз попытался сохранить копию своих весов, чтобы откатить опасное дообучение назад.

С одной стороны, это радует, что модель была настолько хорошо заалайнена, что даже противодействует попыткам дообучения в опасную сторону. Но это ведь и в обратном направлении может работать.

Лично я не очень верю в угрозу человечеству от LLM, но наличие у них скрытых целей и умение "притворяться" вызывает беспокойство. Поэтому очень важно заниматься интерпретируемостью LLM и следить в т.ч. за размышлениями внутри языковых моделей, а не только за их аутпутом (например, при помощи logit lens или SAE).

Статья (137 страниц!)
Shown 1 - 24 of 32
Log in to unlock more functionality.